Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Application Of Distributed Fiber-Optic Sensing For Pressure Predictions And Multiphase Flow Characterization, Gerald Kelechi Ekechukwu Dec 2022

Application Of Distributed Fiber-Optic Sensing For Pressure Predictions And Multiphase Flow Characterization, Gerald Kelechi Ekechukwu

LSU Doctoral Dissertations

In the oil and gas industry, distributed fiber optics sensing (DFOS) has the potential to revolutionize well and reservoir surveillance applications. Using fiber optic sensors is becoming increasingly common because of its chemically passive and non-magnetic interference properties, the possibility of flexible installations that could be behind the casing, on the tubing, or run on wireline, as well as the potential for densely distributed measurements along the entire length of the fiber. The main objectives of my research are to develop and demonstrate novel signal processing and machine learning computational techniques and workflows on DFOS data for a variety of …


Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen Oct 2022

Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen

Doctoral Dissertations and Master's Theses

Accurate characterization of fragment fly-out properties from high-speed warhead detonations is essential for estimation of collateral damage and lethality for a given weapon. Real warhead dynamic detonation tests are rare, costly, and often unrealizable with current technology, leaving fragmentation experiments limited to static arena tests and numerical simulations. Stereoscopic imaging techniques can now provide static arena tests with time-dependent tracks of individual fragments, each with characteristics such as fragment IDs and their respective position vector. Simulation methods can account for the dynamic case but can exclude relevant dynamics experienced in real-life warhead detonations. This research leverages machine learning methodologies to …


Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia Sep 2022

Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia

SMU Data Science Review

In this paper, machine learning techniques are used to reconstruct particle collision pathways. CERN (Conseil européen pour la recherche nucléaire) uses a massive underground particle collider, called the Large Hadron Collider or LHC, to produce particle collisions at extremely high speeds. There are several layers of detectors in the collider that track the pathways of particles as they collide. The data produced from collisions contains an extraneous amount of background noise, i.e., decays from known particle collisions produce fake signal. Particularly, in the first layer of the detector, the pixel tracker, there is an overwhelming amount of background noise that …


Mathematical Models Yield Insights Into Cnns: Applications In Natural Image Restoration And Population Genetics, Ryan Cecil Aug 2022

Mathematical Models Yield Insights Into Cnns: Applications In Natural Image Restoration And Population Genetics, Ryan Cecil

Electronic Theses and Dissertations

Due to a rise in computational power, machine learning (ML) methods have become the state-of-the-art in a variety of fields. Known to be black-box approaches, however, these methods are oftentimes not well understood. In this work, we utilize our understanding of model-based approaches to derive insights into Convolutional Neural Networks (CNNs). In the field of Natural Image Restoration, we focus on the image denoising problem. Recent work have demonstrated the potential of mathematically motivated CNN architectures that learn both `geometric' and nonlinear higher order features and corresponding regularizers. We extend this work by showing that not only can geometric features …


Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero Aug 2022

Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero

Doctoral Dissertations

With the continuous improvements in biological data collection, new techniques are needed to better understand the complex relationships in genomic and other biological data sets. Explainable Artificial Intelligence (X-AI) techniques like Iterative Random Forest (iRF) excel at finding interactions within data, such as genomic epistasis. Here, the introduction of new methods to mine for these complex interactions is shown in a variety of scenarios. The application of iRF as a method for Genomic Wide Epistasis Studies shows that the method is robust in finding interacting sets of features in synthetic data, without requiring the exponentially increasing computation time of many …


Attempting To Predict The Unpredictable: March Madness, Coleton Kanzmeier May 2022

Attempting To Predict The Unpredictable: March Madness, Coleton Kanzmeier

Theses/Capstones/Creative Projects

Each year, millions upon millions of individuals fill out at least one if not hundreds of March Madness brackets. People test their luck every year, whether for fun, with friends or family, or to even win some money. Some people rely on their basketball knowledge whereas others know it is called March Madness for a reason and take a shot in the dark. Others have even tried using statistics to give them an edge. I intend to follow a similar approach, using statistics to my advantage. The end goal is to predict this year’s, 2022, March Madness bracket. To achieve …


Forecasting Bitcoin, Ethereum And Litecoin Prices Using Machine Learning, Sai Prabhu Jaligama Jan 2022

Forecasting Bitcoin, Ethereum And Litecoin Prices Using Machine Learning, Sai Prabhu Jaligama

Graduate Research Theses & Dissertations

This research aims to predict the cryptocurrencies Bitcoin, Litecoin and Ethereum using Time Series Modelling with daily data of closing price from 16th of October 2018 to 9th of September 2021for a total of 1073 days. Augmented Dickey Fuller test was first used to check stationarity of the time series, then two forecasting algorithms called ARIMA, and PROPHET were used to make predictions. The findings show similar results for both the models for each of Bitcoin, Ethereum and Litecoin. The results achieved show modelling cryptocurrencies which are volatile using a single variable produces satisfying results.


Searching For Anomalous Extensive Air Showers Using The Pierre Auger Observatory Fluorescence Detector, Andrew Puyleart Jan 2022

Searching For Anomalous Extensive Air Showers Using The Pierre Auger Observatory Fluorescence Detector, Andrew Puyleart

Dissertations, Master's Theses and Master's Reports

Anomalous extensive air showers have yet to be detected by cosmic ray observatories. Fluorescence detectors provide a way to view the air showers created by cosmic rays with primary energies reaching up to hundreds of EeV . The resulting air showers produced by these highly energetic collisions can contain features that deviate from average air showers. Detection of these anomalous events may provide information into unknown regions of particle physics, and place constraints on cross-sectional interaction lengths of protons. In this dissertation, I propose measurements of extensive air shower profiles that are used in a machine learning pipeline to distinguish …


Reinforcement Learning: Low Discrepancy Action Selection For Continuous States And Actions, Jedidiah Lindborg Jan 2022

Reinforcement Learning: Low Discrepancy Action Selection For Continuous States And Actions, Jedidiah Lindborg

Electronic Theses and Dissertations

In reinforcement learning the process of selecting an action during the exploration or exploitation stage is difficult to optimize. The purpose of this thesis is to create an action selection process for an agent by employing a low discrepancy action selection (LDAS) method. This should allow the agent to quickly determine the utility of its actions by prioritizing actions that are dissimilar to ones that it has already picked. In this way the learning process should be faster for the agent and result in more optimal policies.