Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Approximate Techniques In Solving Optimal Camera Placement Problems, Jian Zhao, Ruriko Yoshida, Sen-Ching Samson Cheung, David Haws Nov 2013

Approximate Techniques In Solving Optimal Camera Placement Problems, Jian Zhao, Ruriko Yoshida, Sen-Ching Samson Cheung, David Haws

Statistics Faculty Publications

While the theoretical foundation of the optimal camera placement problem has been studied for decades, its practical implementation has recently attracted significant research interest due to the increasing popularity of visual sensor networks. The most flexible formulation of finding the optimal camera placement is based on a binary integer programming (BIP) problem. Despite the flexibility, most of the resulting BIP problems are NP-hard and any such formulations of reasonable size are not amenable to exact solutions. There exists a myriad of approximate algorithms for BIP problems, but their applications, efficiency, and scalability in solving camera placement are poorly understood. Thus, …


Direct Eit Reconstructions Of Complex Admittivities On A Chest-Shaped Domain In 2-D, Sarah J. Hamilton, Jennifer L. Mueller Apr 2013

Direct Eit Reconstructions Of Complex Admittivities On A Chest-Shaped Domain In 2-D, Sarah J. Hamilton, Jennifer L. Mueller

Mathematics, Statistics and Computer Science Faculty Research and Publications

Electrical impedance tomography (EIT) is a medical imaging technique in which current is applied on electrodes on the surface of the body, the resulting voltage is measured, and an inverse problem is solved to recover the conductivity and/or permittivity in the interior. Images are then formed from the reconstructed conductivity and permittivity distributions. In the 2-D geometry, EIT is clinically useful for chest imaging. In this work, an implementation of a D-bar method for complex admittivities on a general 2-D domain is presented. In particular, reconstructions are computed on a chest-shaped domain for several realistic phantoms including a simulated pneumothorax, …