Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Extending Statistical Learning For Aneurysm Rupture Assessment To Finnish And Japanese Populations Using Morphology, Hemodynamics, And Patient Characteristics, Felicitas J. Detmer, Sara Hadad, Bong Jae Chung, Fernando Mut, Martin Slawski, Norman Juchler, Vartan Kurtcuoglu, Sven Hirsch, Philippe Bijlenga, Yuya Uchiyama, Soichiro Fujimura, Makoto Yamamoto, Yuichi Murayama, Hiroyuki Takao, Timo Koivisto, Juhana Frösen, Juan R. Cebral Jul 2019

Extending Statistical Learning For Aneurysm Rupture Assessment To Finnish And Japanese Populations Using Morphology, Hemodynamics, And Patient Characteristics, Felicitas J. Detmer, Sara Hadad, Bong Jae Chung, Fernando Mut, Martin Slawski, Norman Juchler, Vartan Kurtcuoglu, Sven Hirsch, Philippe Bijlenga, Yuya Uchiyama, Soichiro Fujimura, Makoto Yamamoto, Yuichi Murayama, Hiroyuki Takao, Timo Koivisto, Juhana Frösen, Juan R. Cebral

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

OBJECTIVE: Incidental aneurysms pose a challenge for physicians, who need to weigh the rupture risk against the risks associated with treatment and its complications. A statistical model could potentially support such treatment decisions. A recently developed aneurysm rupture probability model performed well in the US data used for model training and in data from two European cohorts for external validation. Because Japanese and Finnish patients are known to have a higher aneurysm rupture risk, the authors' goals in the present study were to evaluate this model using data from Japanese and Finnish patients and to compare it with new models …


Image-Based Modeling Of Blood Flow In Cerebral Aneurysms Treated With Intrasaccular Flow Diverting Devices, Fernando Mut, Bong Jae Chung, Jorge Chudyk, Pedro Lylyk, Ramanathan Kadirvel, David F. Kallmes, Juan R. Cebral Jun 2019

Image-Based Modeling Of Blood Flow In Cerebral Aneurysms Treated With Intrasaccular Flow Diverting Devices, Fernando Mut, Bong Jae Chung, Jorge Chudyk, Pedro Lylyk, Ramanathan Kadirvel, David F. Kallmes, Juan R. Cebral

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Modeling the flow dynamics in cerebral aneurysms after the implantation of intrasaccular devices is important for understanding the relationship between flow conditions created immediately posttreatment and the subsequent outcomes. This information, ideally available a priori based on computational modeling prior to implantation, is valuable to identify which aneurysms will occlude immediately and which aneurysms will likely remain patent and would benefit from a different procedure or device. In this report, a methodology for modeling the hemodynamics in intracranial aneurysms treated with intrasaccular flow diverting devices is described. This approach combines an image-guided, virtual device deployment within patient-specific vascular models with …


Associations Of Hemodynamics, Morphology, And Patient Characteristics With Aneurysm Rupture Stratified By Aneurysm Location, Felicitas J. Detmer, Bong Jae Chung, Carlos Jimenez, Farid Hamzei-Sichani, David Kallmes, Christopher Putman, Juan R. Cebral Mar 2019

Associations Of Hemodynamics, Morphology, And Patient Characteristics With Aneurysm Rupture Stratified By Aneurysm Location, Felicitas J. Detmer, Bong Jae Chung, Carlos Jimenez, Farid Hamzei-Sichani, David Kallmes, Christopher Putman, Juan R. Cebral

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Purpose: The mechanisms of cerebral aneurysm rupture are not fully understood. We analyzed the associations of hemodynamics, morphology, and patient age and gender with aneurysm rupture stratifying by location. Methods: Using image-based models, 20 hemodynamic and 17 morphological parameters were compared in 1931 ruptured and unruptured aneurysms with univariate logistic regression. Rupture rates were compared between males and females as well as younger and older patients and bifurcation versus sidewall aneurysms for different aneurysm locations. Subsequently, associations between hemodynamics and morphology and patient as well as aneurysm characteristics were analyzed for aneurysms at five locations. Results: Compared to unruptured aneurysms, …


Local Hemodynamic Conditions Associated With Focal Changes In The Intracranial Aneurysm Wall, Juan R. Cebral, F. Detmer, Bong Jae Chung, J. Choque-Velasquez, B. Rezai, H. Lehto, R. Tulamo, J. Hernesniemi, M. Niemela, A. Yu, R. Williamson, Khaled Aziz, S. Sakur, S. Amin-Hanjani, F. Charbel, Y. Tobe, A. Robertson, J. Frösen Jan 2019

Local Hemodynamic Conditions Associated With Focal Changes In The Intracranial Aneurysm Wall, Juan R. Cebral, F. Detmer, Bong Jae Chung, J. Choque-Velasquez, B. Rezai, H. Lehto, R. Tulamo, J. Hernesniemi, M. Niemela, A. Yu, R. Williamson, Khaled Aziz, S. Sakur, S. Amin-Hanjani, F. Charbel, Y. Tobe, A. Robertson, J. Frösen

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

BACKGROUND AND PURPOSE: Aneurysm hemodynamics has been associated with wall histology and inflammation. We investigated associations between local hemodynamics and focal wall changes visible intraoperatively. MATERIALS AND METHODS: Computational fluid dynamics models were constructed from 3D images of 65 aneurysms treated surgically. Aneurysm regions with different visual appearances were identified in intraoperative videos: 1) “atherosclerotic” (yellow), 2) “hyperplastic” (white), 3) “thin” (red), 4) rupture site, and 5) “normal” (similar to parent artery), They were marked on 3D reconstructions. Regional hemodynamics was characterized by the following: wall shear stress, oscillatory shear index, relative residence time, wall shear stress gradient and divergence, …


Multiple Aneurysms Anatomy Challenge 2018 (Match)—Phase Ii: Rupture Risk Assessment, Philipp Berg, Samuel Voß, Gábor Janiga, Sylvia Saalfeld, Aslak W. Bergersen, Kristian Valen-Sendstad, Jan Bruening, Leonid Goubergrits, Andreas Spuler, Tin Lok Chiu, Anderson Chun On Tsang, Gabriele Copelli, Benjamin Csippa, György Paál, Gábor Závodszky, Felicitas J. Detmer, Bong Jae Chung, Juan R. Cebral, Soichiro Fujimura, Hiroyuki Takao, Christof Karmonik, Saba Elias, Nicole M. Cancelliere, Mehdi Najafi, David A. Steinman, Vitor M. Pereira, Senol Piskin, Ender A. Finol, Mariya Pravdivtseva, Prasanth Velvaluri Jan 2019

Multiple Aneurysms Anatomy Challenge 2018 (Match)—Phase Ii: Rupture Risk Assessment, Philipp Berg, Samuel Voß, Gábor Janiga, Sylvia Saalfeld, Aslak W. Bergersen, Kristian Valen-Sendstad, Jan Bruening, Leonid Goubergrits, Andreas Spuler, Tin Lok Chiu, Anderson Chun On Tsang, Gabriele Copelli, Benjamin Csippa, György Paál, Gábor Závodszky, Felicitas J. Detmer, Bong Jae Chung, Juan R. Cebral, Soichiro Fujimura, Hiroyuki Takao, Christof Karmonik, Saba Elias, Nicole M. Cancelliere, Mehdi Najafi, David A. Steinman, Vitor M. Pereira, Senol Piskin, Ender A. Finol, Mariya Pravdivtseva, Prasanth Velvaluri

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Purpose: Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assumptions, the clinical acceptance of these methods remains limited. Methods: To provide an overview of state-of-the-art blood flow simulation capabilities, the Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH) was conducted. Seventeen research groups from all over the world performed segmentations andhemodynamic simulations to identify the ruptured aneurysm in a patient harboring five IAs. Although simulation setups revealed good similarity, clear differences exist with respect to the analysis of aneurysm shape and blood flow results. …