Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Subsystem Eigenstate Thermalization Hypothesis, Anatoly Dymarsky, Nima Lashkari, Hong Liu Jan 2018

Subsystem Eigenstate Thermalization Hypothesis, Anatoly Dymarsky, Nima Lashkari, Hong Liu

Physics and Astronomy Faculty Publications

Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment …


Relaxation Of Charge In Monolayer Graphene: Fast Nonlinear Diffusion Versus Coulomb Effects, Eugene B. Kolomeisky, Joseph P. Straley Jan 2017

Relaxation Of Charge In Monolayer Graphene: Fast Nonlinear Diffusion Versus Coulomb Effects, Eugene B. Kolomeisky, Joseph P. Straley

Physics and Astronomy Faculty Publications

Pristine monolayer graphene exhibits very poor screening because the density of states vanishes at the Dirac point. As a result, charge relaxation is controlled by the effects of zero-point motion (rather than by the Coulomb interaction) over a wide range of parameters. Combined with the fact that graphene possesses finite intrinsic conductivity, this leads to a regime of relaxation described by a nonlinear diffusion equation with a diffusion coefficient that diverges at zero charge density. Some consequences of this fast diffusion are self-similar superdiffusive regimes of relaxation, the development of a charge depleted region at the interface between electron- and …