Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Stars, Interstellar Medium and the Galaxy

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss Nov 2019

Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss

LSU Doctoral Dissertations

Clustering in nuclear systems has broad impacts on all phases of stellar burning, and plays a significant role in our understanding of nucleosynthesis, or how and where nuclei are produced in the universe. The role of alpha particles in particular is extremely important for nuclear astrophysics: 4He was one of the earliest elements produced in the Big Bang, it is one of the most abundant elements in the universe, and helium burning -- in particular, the triple-alpha process -- is one of the most important ``engines'' in stars. To better understand nucleosynthesis and stellar burning, then, it is important …


A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that …


Feasibility Of Circular Orbits For Proximity Operations In Strongly Perturbed Environments Around Uniformly Rotating Asteroids, Nicholas Peter Liapis Aug 2019

Feasibility Of Circular Orbits For Proximity Operations In Strongly Perturbed Environments Around Uniformly Rotating Asteroids, Nicholas Peter Liapis

Doctoral Dissertations and Master's Theses

Asteroids have been mapped and observed since 1801 when an Italian astronomer Guiseppe Piazzi discovered Ceres (Serio, Manara, & Sicoli, 2002). Since then, asteroids have been growing in popularity throughout the scientific community because they are thought to hold the information we need to understand how the solar system developed and why life exists on earth, as well as potential precious resources. This research studies different types of orbits that have been performed to date around asteroids and how they can be reworked to require less control effort. Different types of missions that have been sent to asteroids are discussed, …


Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal Jul 2019

Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal

Physics & Astronomy ETDs

The recent discovery of gravitational waves (GWs) by the LIGO collaboration has opened a new observing window on the universe, but it is limited to the GWs in the frequency range of 10-1000 Hz. The main motivation of this thesis is to consider the possibility of detecting low frequency (nHz) GWs. In the pursuit of these waves, we need to understand their source of origin and build a detector with the required sensitivity. Low-frequency waves are expected as a result of coalescing binary supermassive black holes (SMBBHs). We hope to detect these waves in the near future using pulsar timing …


Thornado-Hydro: Generalizing Discontinuous Galerkin Methods For A Nuclear Equation Of State For Supernova Hydrodynamics, Brandon Lynn Barker, Eirik Endeve, Anthony Mezzacappa May 2019

Thornado-Hydro: Generalizing Discontinuous Galerkin Methods For A Nuclear Equation Of State For Supernova Hydrodynamics, Brandon Lynn Barker, Eirik Endeve, Anthony Mezzacappa

Chancellor’s Honors Program Projects

No abstract provided.


A Photometric Study Of The Eclipsing Binary V574 Lyrae, Abigail L.J. Rickards May 2019

A Photometric Study Of The Eclipsing Binary V574 Lyrae, Abigail L.J. Rickards

Electronic Theses and Dissertations

Variable stars provide unparalleled insight into stellar evolution and eclipsing binary variables are particularly excellent laboratories for determining stellar physical parameters and behavior. These parameters, when taken with those of other stars, can be used to evaluate current theories on stellar evolution and stellar structure. With the view of contributing useful data to this cause, a photometric study of the eclipsing binary system V574 Lyrae (Lyr) was undertaken to determine the system's physical parameters and to create a model of the system. Data were collected with a 0.36 m Ritchey-Chr'etien telescope and the Sloan g', r', and i' filters and …


Determination Of Multi-Messenger Signals From Matter Outflows Of Merger Systems, Ronny Nguyen Jan 2019

Determination Of Multi-Messenger Signals From Matter Outflows Of Merger Systems, Ronny Nguyen

Honors Theses and Capstones

In 2017, LIGO detected gravitational waves from GW170817. This presented for the first time, gravitational waves originating from a neutron star - neutron star merger. Studies of neutron star mergers are significant because the multi-messenger signals in the form of gravitational waves and electromagnetic waves can inform us on the nuclear physics of neutron stars and the creation of heavy elements in the universe. Matter is ejected in the merging process and forms the outflow which provides a neutron-rich environment for rapid neutron capture (r-process) to occur leading to the nucleosynthesis of heavy elements. What we detect on Earth are …


Non-Covalent And Covalent Interactions Between Phenylacetylene And Quinoline Radical Cations With Polar And Non-Polar Molecules In The Gas Phase, Adam C. Pearcy Jan 2019

Non-Covalent And Covalent Interactions Between Phenylacetylene And Quinoline Radical Cations With Polar And Non-Polar Molecules In The Gas Phase, Adam C. Pearcy

Theses and Dissertations

Gas phase molecular clusters present an ideal medium for observing factors that drive chemical reactions without outside interferences from excessive solvent molecules. Introducing an ion into the cluster promotes ion-molecule interactions that may manifest in a variety of non-covalent or even covalent binding motifs and are of significant importance in many fields including atmospheric and astronomical sciences. For instance, in outer space, molecules are subject to ionizing radiation where ion-molecule reactions become increasingly competitive to molecule-molecule interactions. To elucidate individual ion-molecule interaction information, mass spectrometry was used in conjunction with appropriate theoretical calculations.

Three main categories of experiment were conducted …


The Pre-Roche Lobe Overflow Evolution Of Massive Close Binary Stars: A Study Of Rotation, Wind Enhanced Mass-Loss, And The Bi-Stability Jump, Thomas C. Gehrman Jr. Jan 2019

The Pre-Roche Lobe Overflow Evolution Of Massive Close Binary Stars: A Study Of Rotation, Wind Enhanced Mass-Loss, And The Bi-Stability Jump, Thomas C. Gehrman Jr.

All Graduate Theses, Dissertations, and Other Capstone Projects

Massive stars have the ability to enrich their environment with heavy elements and influence star formation in galaxies. Some massive stars exist in binary systems with short orbital periods. These are called massive close binaries. It is important to understand the evolution of massive close binary systems to gain insight about galaxy evolution. Massive stars above 20 solar masses experience a bi-stability jump where there is a sudden increase in mass-loss rate in their winds. There is ongoing research in this field, but the study of the bi-stability jump and its effects on massive close binary star properties has not …


Unh Observatory Exoplanet Transit Depth Limit, Nicholas R. Larose Jan 2019

Unh Observatory Exoplanet Transit Depth Limit, Nicholas R. Larose

Honors Theses and Capstones

Using the University of New Hampshire Observatory, we performed multiple exoplanet transits observations on a variety of systems. Of these transits, those performed with ideal weather conditions were chosen to do extensive analysis on. The transit chosen for initial analysis was HAT-P-56b. We then used Z-Score values, along with the average mean and standard deviation collected from multiple transits to determine a minimum possible transit depth of 7.4 +/- 0.6 mmag. This value will allow UNH to access exoplanet transit observation and / or confirm potential exoplanets, thus making the UNH Observatory more research capable. A follow up threshold transit …


Charged Particle Filter For Entrance Of Imap-Lo, Daniel Abel Jan 2019

Charged Particle Filter For Entrance Of Imap-Lo, Daniel Abel

Honors Theses and Capstones

No abstract provided.


Classification Of Stars From Redshifted Stellar Spectra Utilizing Machine Learning, Michael J. Brice Jan 2019

Classification Of Stars From Redshifted Stellar Spectra Utilizing Machine Learning, Michael J. Brice

All Master's Theses

The classification of stellar spectra is a fundamental task in stellar astrophysics. There have been many explorations into the automated classification of stellar spectra but few that involve the Sloan Digital Sky Survey (SDSS). Stellar spectra from the SDSS are applied to standard classification methods such as K-Nearest Neighbors, Random Forest, and Support Vector Machine to automatically classify the spectra. Stellar spectra are high dimensional data and the dimensionality is reduced using standard Feature Selection methods such as Chi-Squared and Fisher score and with domain-specific astronomical knowledge because classifiers work in low dimensional space. These methods are utilized to classify …


The Impact Of Hii Regions On The Interstellar Medium Of Our Galaxy, Matteo Luisi Jan 2019

The Impact Of Hii Regions On The Interstellar Medium Of Our Galaxy, Matteo Luisi

Graduate Theses, Dissertations, and Problem Reports

The interstellar medium (ISM) of our Galaxy contains low-density diffuse ionized gas known as the warm ionized medium (WIM). O- and B-type stars emit large amounts of ionizing radiation and it is believed that a fraction of this radiation escapes from their fully ionized HII regions and into the ISM where it is responsible for maintaining the ionization of the WIM. Here we aim to better understand how the radiation produced by OB stars is able to leak from the HII regions, how the radiation field changes during this process, and how the radiation affects the ambient ISM. Using Green …