Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Stars, Interstellar Medium and the Galaxy

Dartmouth Scholarship

Star evolution

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Star Formation And Relaxation In 379 Nearby Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner Jun 2015

Star Formation And Relaxation In 379 Nearby Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner

Dartmouth Scholarship

We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes Mr < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.


Ultracool White Dwarfs And The Age Of The Galactic Disc, A. Gianninas, B. Curd, John R. Thorstensen, Mukremin Kilic Mar 2015

Ultracool White Dwarfs And The Age Of The Galactic Disc, A. Gianninas, B. Curd, John R. Thorstensen, Mukremin Kilic

Dartmouth Scholarship

We present parallax observations and a detailed model atmosphere analysis of 54 cool and ultracool (Teff < 4000 K) white dwarfs (WDs) in the solar neighbourhood. For the first time, a large number of cool and ultracool WDs have distance and tangential velocities measurements available. Our targets have distances ranging from 21 pc to >100 pc, and include five stars within 30 pc. Contrary to expectations, all but two of them have tangential velocities smaller than 150 km s−1 thus suggesting Galactic disc membership. The oldest WDs in this sample have WD cooling ages of 10 Gyr, providing a firm lower limit to the age of the thick disc population. Many of our targets have uncharacteristically large radii, indicating that they are low mass WDs. It appears that we have detected the brighter population of cool and ultracool …


The Broad-Lined Type Ic Sn 2012ap And The Nature Of Relativistic Supernovae Lacking A Gamma-Ray Burst Detection, D. Milisavljevic, R. Margutti, J. T. Parrent, A. M. Soderberg, R. A. Fesen Jan 2015

The Broad-Lined Type Ic Sn 2012ap And The Nature Of Relativistic Supernovae Lacking A Gamma-Ray Burst Detection, D. Milisavljevic, R. Margutti, J. T. Parrent, A. M. Soderberg, R. A. Fesen

Dartmouth Scholarship

We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s–1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also …


Magnetic Inhibition Of Convection And The Fundamental Properties Of Low-Mass Stars. I. Stars With A Radiative Core, Gregory A. Feiden, Brian Chaboyer Dec 2013

Magnetic Inhibition Of Convection And The Fundamental Properties Of Low-Mass Stars. I. Stars With A Radiative Core, Gregory A. Feiden, Brian Chaboyer

Dartmouth Scholarship

Magnetic fields are hypothesized to inflate the radii of low-mass stars—defined as less massive than 0.8 M —in detached eclipsing binaries (DEBs). We investigate this hypothesis using the recently introduced magnetic Dartmouth stellar evolution code. In particular, we focus on stars thought to have a radiative core and convective outer envelope by studying in detail three individual DEBs: UV Psc, YY Gem, and CU Cnc. Our results suggest that the stabilization of thermal convection by a magnetic field is a plausible explanation for the observed model-radius discrepancies. However, surface magnetic field strengths required by the models are significantly stronger …


The Interior Structure Constants As An Age Diagnostic For Low-Mass, Pre-Main-Sequence Detached Eclipsing Binary Stars, Gregory A. Feiden, Aaron Dotter Feb 2013

The Interior Structure Constants As An Age Diagnostic For Low-Mass, Pre-Main-Sequence Detached Eclipsing Binary Stars, Gregory A. Feiden, Aaron Dotter

Dartmouth Scholarship

We propose a novel method for determining the ages of low-mass, pre-main-sequence stellar systems using the apsidal motion of low-mass detached eclipsing binaries. The apsidal motion of a binary system with an eccentric orbit provides information regarding the interior structure constants of the individual stars. These constants are related to the normalized stellar interior density distribution and can be extracted from the predictions of stellar evolution models. We demonstrate that low-mass, pre-main-sequence stars undergoing radiative core contraction display rapidly changing interior structure constants (greater than 5% per 10 Myr) that, when combined with observational determinations of the interior structure constants …


High-Velocity Outflows Without Agn Feedback: Eddington-Limited Star Formation In Compact Massive Galaxies, Aleksandar M. Diamond-Stanic, John Moustakas, Christy A. Tremonti, Alison L. Coil, Ryan C. Hickox Aug 2012

High-Velocity Outflows Without Agn Feedback: Eddington-Limited Star Formation In Compact Massive Galaxies, Aleksandar M. Diamond-Stanic, John Moustakas, Christy A. Tremonti, Alison L. Coil, Ryan C. Hickox

Dartmouth Scholarship

We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit 1000 km s–1 outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we estimate star formation rate (SFR) surface densities that approach ΣSFR ≈ 3000 M yr–1 kpc–2, comparable to the Eddington limit from radiation pressure on dust grains. We argue that feedback associated with a compact starburst in the form of radiation pressure from massive stars and ram pressure from supernovae and stellar winds is sufficient …


Analysis Of The Early-Time Optical Spectra Of Sn 2011fe In M101, J. T. Parrent, D. A. Howell, B. Friesen, R. C. Thomas Jun 2012

Analysis Of The Early-Time Optical Spectra Of Sn 2011fe In M101, J. T. Parrent, D. A. Howell, B. Friesen, R. C. Thomas

Dartmouth Scholarship

The nearby Type Ia supernova SN 2011fe in M101 (cz=241 km s^-1) provides a unique opportunity to study the early evolution of a "normal" Type Ia supernova, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, …


The Acs Survey Of Galactic Globular Clusters. Xi. The Three-Dimensional Orientation Of The Sagittarius Dwarf Spheroidal Galaxy And Its Globular Clusters, Michael H. H. Siegel, Steven R. Majewski, David R. Law, Ata Sarajedini, Aaron Dotter, A Marín-Franch, Brian Chaboyer Dec 2011

The Acs Survey Of Galactic Globular Clusters. Xi. The Three-Dimensional Orientation Of The Sagittarius Dwarf Spheroidal Galaxy And Its Globular Clusters, Michael H. H. Siegel, Steven R. Majewski, David R. Law, Ata Sarajedini, Aaron Dotter, A Marín-Franch, Brian Chaboyer

Dartmouth Scholarship

We use observations from the Hubble Space Telescope Advanced Camera for Surveys (HST/ACS) study of Galactic globular clusters to investigate the spatial distribution of the inner regions of the disrupting Sagittarius dwarf spheroidal galaxy (Sgr). We combine previously published analyses of four Sgr member clusters located near or in the Sgr core (M54, Arp 2, Terzan 7, and Terzan 8) with a new analysis of diffuse Sgr material identified in the background of five low-latitude Galactic bulge clusters (NGC 6624, 6637, 6652, 6681, and 6809) observed as part of the ACS survey. By comparing the bulge cluster color-magnitude …


Time Evolution Of The Reverse Shock In Sn 1006, P. Frank Winkler, Andrew J. S. Hamilton, Knox S. Long, Robert A. Fesen Nov 2011

Time Evolution Of The Reverse Shock In Sn 1006, P. Frank Winkler, Andrew J. S. Hamilton, Knox S. Long, Robert A. Fesen

Dartmouth Scholarship

The Schweizer-Middleditch star, located behind the SN 1006 remnant and near its center in projection, provides the opportunity to study cold, expanding ejecta within the SN 1006 shell through UV absorption. Especially notable is an extremely sharp red edge to the Si II 1260 Å feature, which stems from the fastest moving ejecta on the far side of the SN 1006 shell—material that is just encountering the reverse shock. Comparing Hubble Space Telescope far-UV spectra obtained with the Cosmic Origins Spectrograph in 2010 and with the Space Telescope Imaging Spectrograph in 1999, we have measured the change in this feature …


Acurate Low-Mass Stellar Models Of Koi-126, Gregory A. Feiden, Brian Chaboyer, Aaron Dotter Oct 2011

Acurate Low-Mass Stellar Models Of Koi-126, Gregory A. Feiden, Brian Chaboyer, Aaron Dotter

Dartmouth Scholarship

The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. (2011) appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the …


Sdss Unveils A Population Of Intrinsically Faint Cataclysmic Variables At The Minimum Orbital Period, B. T. Gänsicke, M. Dillon, J. Southworth, J. R. Thorstensen May 2009

Sdss Unveils A Population Of Intrinsically Faint Cataclysmic Variables At The Minimum Orbital Period, B. T. Gänsicke, M. Dillon, J. Southworth, J. R. Thorstensen

Dartmouth Scholarship

We discuss the properties of 137 cataclysmic variables (CVs) which are included in the Sloan Digital Sky Survey (SDSS) spectroscopic data base, and for which accurate orbital periods have been measured. 92 of these systems are new discoveries from SDSS and were followed-up in more detail over the past few years. 45 systems were previously identified as CVs because of the detection of optical outbursts and/or X-ray emission, and subsequently re-identified from the SDSS spectroscopy. The period distribution of the SDSS CVs differs dramatically from that of all the previously known CVs, in particular it contains a significant accumulation of …


Stellar Population Models And Individual Element Abundances. Ii. Stellar Spectra And Integrated Light Models, Hyun-Chul Lee, Guy Worthey, Aaron Dotter, Brian Chaboyer Apr 2009

Stellar Population Models And Individual Element Abundances. Ii. Stellar Spectra And Integrated Light Models, Hyun-Chul Lee, Guy Worthey, Aaron Dotter, Brian Chaboyer

Dartmouth Scholarship

The first paper in this series explored the effects of altering the chemical mixture of the stellar population on an element-by-element basis on stellar evolutionary tracks and isochrones to the end of the red giant branch. This paper extends the discussion by incorporating the fully consistent synthetic stellar spectra with those isochrone models in predicting integrated colors, Lick indices, and synthetic spectra. Older populations display element ratio effects in their spectra at higher amplitude than younger populations. In addition, spectral effects in the photospheres of stars tend to dominate over effects from isochrone temperatures and lifetimes, but, further, the isochrone-based …


Stellar Population Models And Individual Element Abundances. I. Sensitivity Of Stellar Evolution Models, Aaron Dotter, Brian Chaboyer, Jason W. Ferguson, Hyun-Chul Lee Sep 2007

Stellar Population Models And Individual Element Abundances. I. Sensitivity Of Stellar Evolution Models, Aaron Dotter, Brian Chaboyer, Jason W. Ferguson, Hyun-Chul Lee

Dartmouth Scholarship

Integrated light from distant galaxies is often compared to stellar population models via the equivalent widths of spectral features—spectral indices—whose strengths rely on the abundances of one or more elements. Such comparisons hinge not only on the overall metal abundance, but also on relative abundances. Studies have examined the influence of individual elements on synthetic spectra but little has been done to address similar issues in the stellar evolution models that underlie most stellar population models. Stellar evolution models will primarily be influenced by changes in opacities. In order to explore this issue in detail, 12 sets of stellar evolution …


From Canonical To Enhanced Extra Mixing In Low‐Mass Red Giants: Tidally Locked Binaries, Pavel A. Denissenkov, Brian Chaboyer, Ke Li Apr 2006

From Canonical To Enhanced Extra Mixing In Low‐Mass Red Giants: Tidally Locked Binaries, Pavel A. Denissenkov, Brian Chaboyer, Ke Li

Dartmouth Scholarship

Stellar models that incorporate simple diffusion or shear-induced mixing are used to describe canonical extra mixing in low-mass red giants of low and solar metallicity. These models are able to simultaneously explain the observed Li and CN abundance changes along the upper red giant branch (RGB) in field low-metallicity stars and match photometry, rotation, and 12C/13C ratios for stars in the old open cluster M67. The shear mixing model requires that main-sequence (MS) progenitors of upper RGB stars possessed rapidly rotating radiative cores and that specific angular momentum was conserved in each of their mass shells during …


Theoretical Uncertainties In Red Giant Branch Evolution: The Red Giant Branch Bump, Stephan R. R. Bjork, Brian Chaboyer Apr 2006

Theoretical Uncertainties In Red Giant Branch Evolution: The Red Giant Branch Bump, Stephan R. R. Bjork, Brian Chaboyer

Dartmouth Scholarship

A Monte Carlo simulation exploring uncertainties in standard stellar evolution theory on the red giant branch of metal-poor globular clusters has been conducted. Confidence limits are derived on the absolute V-band magnitude of the bump in the red giant branch luminosity function (MV,b) and the excess number of stars in the bump, Rb. The analysis takes into account uncertainties in the primordial helium abundance, abundance of α-capture elements, radiative and conductive opacities, nuclear reaction rates, neutrino energy losses, the treatments of diffusion and convection, the surface boundary conditions, and color transformations. The uncertainty in …