Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Stars, Interstellar Medium and the Galaxy

Dartmouth Scholarship

Solar and stellar astrophysics

Publication Year

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Absolute Ages And Distances Of 22 Gcs Using Monte Carlo Main-Sequence Fitting, Erin M. O'Malley, Christina Gilligan, Brian Chaboyer Apr 2017

Absolute Ages And Distances Of 22 Gcs Using Monte Carlo Main-Sequence Fitting, Erin M. O'Malley, Christina Gilligan, Brian Chaboyer

Dartmouth Scholarship

The recent Gaia Data Release 1 of stellar parallaxes provides ample opportunity to find metal-poor main-sequence stars with precise parallaxes. We select 21 such stars with parallax uncertainties better than σ π /π ≤ 0.10 and accurate abundance determinations suitable for testing metal-poor stellar evolution models and determining the distance to Galactic globular clusters (GCs). A Monte Carlo analysis was used, taking into account uncertainties in the model construction parameters, to generate stellar models and isochrones to fit to the calibration stars. The isochrones that fit the calibration stars best were then used to determine the distances and ages …


A Differential Abundance Analysis Of Very Metal-Poor Stars, Erin M. O'Malley, Andrew Mcwilliam, Brian Chaboyer, Ian Thompson Mar 2017

A Differential Abundance Analysis Of Very Metal-Poor Stars, Erin M. O'Malley, Andrew Mcwilliam, Brian Chaboyer, Ian Thompson

Dartmouth Scholarship

We have performed a differential line-by-line chemical abundance analysis, ultimately relative to the Sun, of nine very metal-poor main-sequence (MS) halo stars, near [Fe/H] = −2 dex. Our abundances range from dex with conservative uncertainties of 0.07 dex. We find an average [α/Fe] = 0.34 ± 0.09 dex, typical of the Milky Way. While our spectroscopic atmosphere parameters provide good agreement with Hubble Space Telescope parallaxes, there is significant disagreement with temperature and gravity parameters indicated by observed colors and theoretical isochrones. Although a systematic underestimate of the stellar temperature by a few hundred degrees could explain this …


Testing Metal-Poor Stellar Models And Isochrones With Hst Parallaxes Of Metal-Poor Stars, B. Chaboyer, E. O'Malley, G. F. Benedict, G. A. Feiden Jan 2017

Testing Metal-Poor Stellar Models And Isochrones With Hst Parallaxes Of Metal-Poor Stars, B. Chaboyer, E. O'Malley, G. F. Benedict, G. A. Feiden

Dartmouth Scholarship

Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < −1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 μas. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02–0.03 mag. Six of these stars are on the main sequence (MS) (with −2.7 < [Fe/H] < −1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O'Malley et al., we find that standard stellar models using the VandenBerg & Clem color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H] = −2.5) being anomalous in its location in the color–magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with −2.4 ≤ [Fe/H] ≤ −1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7 ± 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.


A Trip To The Cataclysmic Binary Zoo: Detailed Follow-Up Of 35 Recently Discovered Systems, John R. Thorstensen, Erek H. Alper, Kathryn E. Weil Dec 2016

A Trip To The Cataclysmic Binary Zoo: Detailed Follow-Up Of 35 Recently Discovered Systems, John R. Thorstensen, Erek H. Alper, Kathryn E. Weil

Dartmouth Scholarship

We report follow-up studies of 35 recently discovered cataclysmic variables (CVs), 32 of which were found in large, automated synoptic sky surveys. The objects were selected for observational tractability. For 34 of the objects, we present mean spectra and spectroscopic orbital periods, and for one more we give an eclipse-based period. Thirty-two of the period determinations are new, and three of these refine published estimates based on superhump periods. The remaining three of our determinations confirm previously published periods. Twenty of the stars are confirmed or suspected dwarf novae with periods shorter than 3 hr, but we also find three …


Hubble Space Telescopeconstraints On The Winds And Astrospheres Of Red Giant Stars, Brian E. Wood, Hans-Reinhard Müller, Graham M. Harper Sep 2016

Hubble Space Telescopeconstraints On The Winds And Astrospheres Of Red Giant Stars, Brian E. Wood, Hans-Reinhard Müller, Graham M. Harper

Dartmouth Scholarship

We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope, focusing on spectra of the Mg ii h and k lines near 2800 Å in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg ii surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities (V …


Population Properties Of Brown Dwarf Analogs To Exoplanets, Jacqueline K. Faherty, Adric R. Riedel, Kelle L. Cruz, Jonathan Gagne, Joseph C. Filippazzo, Erini Lambrides, Haley Fica, Alycia Weinberger, John R. Thorstensen Jul 2016

Population Properties Of Brown Dwarf Analogs To Exoplanets, Jacqueline K. Faherty, Adric R. Riedel, Kelle L. Cruz, Jonathan Gagne, Joseph C. Filippazzo, Erini Lambrides, Haley Fica, Alycia Weinberger, John R. Thorstensen

Dartmouth Scholarship

We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age-calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color–magnitude, luminosity, and effective temperature. …


Comparative Analysis Of Sn 2012dn Optical Spectra:Days −14 To +114, J. T. Parrent, D. A. Howell, R. A. Fesen, S. Parker Jan 2016

Comparative Analysis Of Sn 2012dn Optical Spectra:Days −14 To +114, J. T. Parrent, D. A. Howell, R. A. Fesen, S. Parker

Dartmouth Scholarship

SN 2012dn is a super-Chandrasekhar mass candidate in a purportedly normal spiral (SAcd) galaxy, and poses a challenge for theories of type Ia supernova diversity. Here we utilize the fast and highly parametrized spectrum synthesis tool, SYNAPPS, to estimate relative expansion velocities of species inferred from optical spectra obtained with six facilities. As with previous studies of normal SN Ia, we find that both unburned carbon and intermediate-mass elements are spatially coincident within the ejecta near and below 14 000 km s−1. Although the upper limit on SN 2012dn's peak luminosity is comparable to some of the most …


Investigating The Consistency Of Stellar Evolution Models With Globular Cluster Observations Via The Red Giant Branch Bump, M. Joyce, B. Chaboyer Nov 2015

Investigating The Consistency Of Stellar Evolution Models With Globular Cluster Observations Via The Red Giant Branch Bump, M. Joyce, B. Chaboyer

Dartmouth Scholarship

Synthetic Red Giant Branch Bump (RGBB) magnitudes are generated with the most recent theoretical stellar evolution models computed with the Dartmouth Stellar Evolution Program (DSEP) code. They are compared to the observational work of Nataf et al., who present RGBB magnitudes for 72 globular clusters. A DSEP model using a chemical composition with enhanced α capture [α/Fe] = +0.4 and an age of 13 Gyr shows agreement with observations over metallicities ranging from [Fe/H] = 0 to [Fe/H] ≈ −1.5, with discrepancy emerging at lower metallicities.


Spectroscopy And Photometry Of Cataclysmic Variable Candidates From The Catalina Real Time Survey, John R. Thorstensen, Julie N. Skinner Aug 2012

Spectroscopy And Photometry Of Cataclysmic Variable Candidates From The Catalina Real Time Survey, John R. Thorstensen, Julie N. Skinner

Dartmouth Scholarship

The Catalina Real Time Survey (CRTS) has found over 500 cataclysmic variable (CV) candidates, most of which were previously unknown. We report here on follow-up spectroscopy of 36 of the brighter objects. Nearly all of the spectra are typical of CVs at minimum light. One object appears to be a flare star, while another has a spectrum consistent with a CV but lies, intriguingly, at the center of a small nebulosity. We measured orbital periods for eight of the CVs, and estimated distances for two based on the spectra of their secondary stars. In addition to the spectra, we obtained …