Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson Aug 2013

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson

STAR Program Research Presentations

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A …


Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali Aug 2013

Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne near-space observatory onboard a modified Boeing 747-SP aircraft, which flies at altitudes of 45,000 ft., above 99% of the Earth’s water vapor. SOFIA contains an effective 2.5 m infrared (IR) telescope that has a dichroic tertiary mirror, reflecting IR and visible wavelengths to the science instrument (SI) and focal plane imager (FPI), respectively. To date, seven different SIs have been designed to cover a wide range of wavelengths and spectral resolutions. Since the telescope operates in the infrared, different techniques, including chopping, nodding, and dithering, are used to reduce the …


Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach Aug 2013

Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach

STAR Program Research Presentations

FLITECAM Data Processing Validation

Many of the challenges that come from working with astronomical imaging arise from the reduction of raw data into scientifically meaningful data. First Light Infrared Test CAMera (FLITECAM) is an infrared camera operating in the 1.0–5.5 μm waveband on board SOFIA (Stratospheric Observatory For Infrared Astronomy). Due to the significant noise from the atmosphere and the camera itself, astronomers have developed many methods to reduce the effects of atmospheric and instrumental emission. The FLITECAM Data Reduction Program (FDRP) is a program, developed at SOFIA Science Center, subtracts darks, removes flats, and dithers images.

This project contains …


Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan Aug 2013

Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan

STAR Program Research Presentations

The stratospheric observatory for infrared astronomy (SOFIA), is a modified Boeing 747-SP with a 2.5m telescope mounted inside. SOFIA flies at an altitude of 45,000 feet, above 99% of the water vapor in the atmosphere, allowing transmission of most infrared radiation. SOFIA has seven different science instruments (SI) that can be used to collect astronomical data, enabling scientists to look at many different wavelengths of infrared and visible radiation.


Abundance Patterns In The Spiral Galaxy Messier 33, Melissa A. Siemer, Ravi Sankrit Jan 2013

Abundance Patterns In The Spiral Galaxy Messier 33, Melissa A. Siemer, Ravi Sankrit

STAR Program Research Presentations

Messier 33 (M33) is a spiral disk galaxy, similar to our galaxy, approximately 3 million light-years from Earth. Because of its proximity to Earth and face-on viewing angle, it is easy to see individual objects. Consequently, M33 is in an ideal position for obtaining data on elemental abundances. By studying M33, we learn how galaxies like our own form and change over time.

We use published optical spectroscopic data, obtained and assembled from online sources, to map the abundances of various elements (Helium, Nitrogen, Oxygen, Neon, Argon, Sulfur) in the planetary nebula and HII region populations of M33. We classify …


Seeing Through A Cloudy Glass: Putting Limits On Planetary Nebulae Abundances Using Photoionization Modeling., Peter R. Sullivan, Ravi Sankrit Jan 2013

Seeing Through A Cloudy Glass: Putting Limits On Planetary Nebulae Abundances Using Photoionization Modeling., Peter R. Sullivan, Ravi Sankrit

STAR Program Research Presentations

Planetary nebulae (PNe) form around low to intermediate mass stars transitioning from the giant branch to white dwarf phase. The outer layer of the star is ejected during the transition and this gas, ionized by the central star, emits a line-spectrum. This spectrum traces the chemical abundances that were characteristic of the interstellar medium in which the star formed (e.g. oxygen) as well as of the elements created by these progenitor stars (e.g. nitrogen) aiding our understanding of chemical evolution of galaxies. In this project, we use modeling of the emission lines of PNe to determine the accuracy of direct …