Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Software Engineering

Research Collection School Of Computing and Information Systems

Reinforcement learning

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Cooperative Reinforcement Learning In Topology-Based Multi-Agent Systems, Dan Xiao, Ah-Hwee Tan Oct 2011

Cooperative Reinforcement Learning In Topology-Based Multi-Agent Systems, Dan Xiao, Ah-Hwee Tan

Research Collection School Of Computing and Information Systems

Topology-based multi-agent systems (TMAS), wherein agents interact with one another according to their spatial relationship in a network, are well suited for problems with topological constraints. In a TMAS system, however, each agent may have a different state space, which can be rather large. Consequently, traditional approaches to multi-agent cooperative learning may not be able to scale up with the complexity of the network topology. In this paper, we propose a cooperative learning strategy, under which autonomous agents are assembled in a binary tree formation (BTF). By constraining the interaction between agents, we effectively unify the state space of individual …


A Hybrid Agent Architecture Integrating Desire, Intention And Reinforcement Learning, Ah-Hwee Tan, Yew-Soon Ong, Akejariyawong Tapanuj Jul 2011

A Hybrid Agent Architecture Integrating Desire, Intention And Reinforcement Learning, Ah-Hwee Tan, Yew-Soon Ong, Akejariyawong Tapanuj

Research Collection School Of Computing and Information Systems

This paper presents a hybrid agent architecture that integrates the behaviours of BDI agents, specifically desire and intention, with a neural network based reinforcement learner known as Temporal DifferenceFusion Architecture for Learning and COgNition (TD-FALCON). With the explicit maintenance of goals, the agent performs reinforcement learning with the awareness of its objectives instead of relying on external reinforcement signals. More importantly, the intention module equips the hybrid architecture with deliberative planning capabilities, enabling the agent to purposefully maintain an agenda of actions to perform and reducing the need of constantly sensing the environment. Through reinforcement learning, plans can also be …