Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences

Faculty of Science - Papers (Archive)

Fibril

Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Binding Of The Molecular Chaperone Alphab-Crystallin To Abeta Amyloid Fibrils Inhibits Fibril Elongation, Sarah L. Shammas, Christopher A. Waudby, Shuyu Wang, Alexander K. Buell, Tuomas P. Knowles, Heath W. Ecroyd, Mark E. Welland, John A. Carver, Christopher M. Dobson, Sarah Meehan Jan 2011

Binding Of The Molecular Chaperone Alphab-Crystallin To Abeta Amyloid Fibrils Inhibits Fibril Elongation, Sarah L. Shammas, Christopher A. Waudby, Shuyu Wang, Alexander K. Buell, Tuomas P. Knowles, Heath W. Ecroyd, Mark E. Welland, John A. Carver, Christopher M. Dobson, Sarah Meehan

Faculty of Science - Papers (Archive)

The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer's disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-crystallin binds to wild-type Aβ42 fibrils with micromolar affinity, and also binds to fibrils formed from the E22G Arctic mutation of Aβ42. Immunoelectron microscopy confirms that binding occurs along the entire length …


The Two-Faced Nature Of Small Heat Shock Proteins: Amyloid Assembly And The Inhibition Of Fibril Formation. Relevance To Disease States, Heath W. Ecroyd, S Meehan, John A. Carver Jan 2010

The Two-Faced Nature Of Small Heat Shock Proteins: Amyloid Assembly And The Inhibition Of Fibril Formation. Relevance To Disease States, Heath W. Ecroyd, S Meehan, John A. Carver

Faculty of Science - Papers (Archive)

The ability of small heat-shock proteins (sHsps) such as alphaB-crystallin to inhibit the amorphous (disordered) aggregation of varied target proteins in a chaperone-like manner has been well described. The mechanistic details of this action are not understood. Amyloid fibril formation is an alternative off-folding pathway that leads to highly ordered beta-sheet-containing aggregates. Amyloid fibril formation is associated with a broad range of protein conformational diseases such as Alzhiemer's, Parkinson's and Huntington's and sHsp expression is elevated in the protein deposits that are characteristic of these disease states. The ability of sHsps to prevent fibril formation has been less well characterised. …


Carboxymethylated-K-Casein: A Convenient Tool For The Identification Of Polyphenolic Inhibitors Of Amyloid Fibril Formation, John A. Carver, Peter J. Duggan, Heath Ecroyd, Yanqin Liu, Adam G. Meyer, C E. Tranberg Jan 2010

Carboxymethylated-K-Casein: A Convenient Tool For The Identification Of Polyphenolic Inhibitors Of Amyloid Fibril Formation, John A. Carver, Peter J. Duggan, Heath Ecroyd, Yanqin Liu, Adam G. Meyer, C E. Tranberg

Faculty of Science - Papers (Archive)

Reduced and carboxymethylated-κ-casein (RCM-κ-CN) is a milk-derived amyloidogenic protein that readily undergoes nucleation-dependent aggregation and amyloid fibril formation via a similar pathway to disease-specific amyloidogenic peptides like amyloid beta (Aβ), which is associated with Alzheimer’s disease. In this study, a series of flavonoids, many known to be inhibitors of Aβ fibril formation, were screened for their ability to inhibit RCM-κ-CN fibrilisation, and the results were compared with literature data on Aβ inhibition. Flavonoids that had a high degree of hydroxylation and molecular planarity gave good inhibition of RCM-κ-CN fibril formation. IC50 values were between 10- and 200-fold higher with RCM-κ-CN …


Alphab-Crystallin Inhibits The Cell Toxicity Associated With Amyloid Fibril Formation By Kappa-Casein And The Amyloid-Beta Peptide, Francis C. Dehle, Heath Ecroyd, Ian F. Musgrave, John A. Carver Jan 2010

Alphab-Crystallin Inhibits The Cell Toxicity Associated With Amyloid Fibril Formation By Kappa-Casein And The Amyloid-Beta Peptide, Francis C. Dehle, Heath Ecroyd, Ian F. Musgrave, John A. Carver

Faculty of Science - Papers (Archive)

Amyloid fibril formation is associated with diseases such as Alzheimer’s, Parkinson’s, and prion diseases. Inhibition of amyloid fibril formation by molecular chaperone proteins, such as the small heat-shock protein αB-crystallin, may play a protective role in preventing the toxicity associated with this form of protein misfolding. Reduced and carboxymethylated κ-casein (RCMκ-CN), a protein derived from milk, readily and reproducibly forms fibrils at physiological temperature and pH. We investigated the toxicity of fibril formation by RCMκ-CN using neuronal model PC12 cells and determined whether the inhibition of fibril formation altered its cell toxicity. To resolve ambiguities in the literature, we also …


The Dissociated Form Of Kappa-Casein Is The Precursor To Its Amyloid Fibril Formation, Heath Ecroyd, David Thorn, Yanqin Liu, John Carver Jan 2010

The Dissociated Form Of Kappa-Casein Is The Precursor To Its Amyloid Fibril Formation, Heath Ecroyd, David Thorn, Yanqin Liu, John Carver

Faculty of Science - Papers (Archive)

Bovine milk kappa-casein forms a self-associating oligomeric micelle-like species, in equilibrium with dissociated forms. In its native form, intra- and inter-molecular disulfide bonds lead to the formation of multimeric species ranging from monomers to decamers. When incubated under conditions of physiological pH and temperature, both reduced and non-reduced kappa-casein form highly structured beta-sheet amyloid fibrils. We investigated whether the precursor to kappa-casein fibril formation is a dissociated state of the protein or its oligomeric micelle-like form. We show that reduced kappa-casein is capable of forming fibrils well below its critical micelle concentration, i.e. at concentrations where only dissociated forms of …


The Thioflavin T Fluorescence Assay For Amyloid Fibril Detection Can Be Biased By The Presence Of Exogenous Compounds, Sean A. Hudson, Heath Ecroyd, Tak W. Kee, John A. Carver Jan 2009

The Thioflavin T Fluorescence Assay For Amyloid Fibril Detection Can Be Biased By The Presence Of Exogenous Compounds, Sean A. Hudson, Heath Ecroyd, Tak W. Kee, John A. Carver

Faculty of Science - Papers (Archive)

Thioflavin T (ThT) dye fluorescence is used regularly to quantify the formation and inhibition of amyloid fibrils in the presence of anti-amyloidogenic compounds such as polyphenols. However, in this study, it was shown, using three polyphenolics (curcumin, quercetin and resveratrol), that ThT fluorescence should be used with caution in the presence of such exogenous compounds. The strong absorptive and fluorescent properties of quercetin and curcumin were found to significantly bias the ThT fluorescence readings in both in situ real-time ThT assays and single time-point dilution ThT-type assays. The presence of curcumin at concentrations as low as 0.01 and 1 uM …


Dissociation From The Oligomeric State Is The Rate-Limiting Step In Fibril Formation By Kappa-Casein, Heath Ecroyd, Tomas Koudelka, David Thorn, Danielle M. Williams, Glyn Devlin, Peter Hoffmann, John A. Carver Jan 2008

Dissociation From The Oligomeric State Is The Rate-Limiting Step In Fibril Formation By Kappa-Casein, Heath Ecroyd, Tomas Koudelka, David Thorn, Danielle M. Williams, Glyn Devlin, Peter Hoffmann, John A. Carver

Faculty of Science - Papers (Archive)

Amyloid fibrils are aggregated and precipitated forms of protein in which the protein exists in highly ordered, long, unbranching threadlike formations that are stable and resistant to degradation by proteases. Fibril formation is an ordered process that typically involves the unfolding of a protein to partially folded states that subsequently interact and aggregate through a nucleation-dependent mechanism. Here we report on studies investigating the molecular basis of the inherent propensity of the milk protein, kappa-casein, to form amyloid fibrils. Using reduced and carboxymethylated kappa-casein ( RCM kappa-CN), we show that fibril formation is accompanied by a characteristic increase in thioflavin …