Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Sedimentology

Old Dominion University

Organic carbon

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Detrital Neodymium And (Radio)Carbon As Complementary Sedimentary Bedfellows? The Western Arctic Ocean As A Testbed, Melissa S. Schwab, Jörg D. Rickli, Robie W. Macdonald, H. Rodger Harvey, Negar Haghipour, Timothy I. Eglinton Jan 2021

Detrital Neodymium And (Radio)Carbon As Complementary Sedimentary Bedfellows? The Western Arctic Ocean As A Testbed, Melissa S. Schwab, Jörg D. Rickli, Robie W. Macdonald, H. Rodger Harvey, Negar Haghipour, Timothy I. Eglinton

OES Faculty Publications

Interactions between organic and detrital mineral phases strongly influence both the dispersal and accumulation of terrestrial organic carbon (OC) in continental margin sediments. Yet the complex interplay among biological, chemical, and physical processes limits our understanding of how organo-mineral interactions evolve during sediment transfer and burial. In particular, diverse OC sources and complex hydrodynamic processes hinder the assessment of how the partnership of organic matter and its mineral host evolves during supply and dispersal over continental margins. In this study, we integrate new and compiled sedimentological (grain size, surface area), organic (%OC, OC-δ13C, OC-F14C), and inorganic …


Using Rare Earth Elements To Constrain Particulate Organic Carbon Flux In The East China Sea, Chin-Chang Hung, Ya-Feng Chen, Shih-Chieh Hsu, Kui Wang, Jianfang Chen, David J. Burdige Sep 2016

Using Rare Earth Elements To Constrain Particulate Organic Carbon Flux In The East China Sea, Chin-Chang Hung, Ya-Feng Chen, Shih-Chieh Hsu, Kui Wang, Jianfang Chen, David J. Burdige

OES Faculty Publications

Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing …