Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt Jun 2021

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt

Department of Physics and Astronomy: Faculty Publications

Harmonic oscillators count among the most fundamental quantum systems with important applications in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and achieve selective excitation of energy eigenstates, cat states, and other non-Gaussian states. This technique can transform the harmonic oscillator into a coherent two-level system or be used …


Non-Gaussian Measurements Of Coherent States Of Light For Metrology And Communication, Matthew Dimario May 2021

Non-Gaussian Measurements Of Coherent States Of Light For Metrology And Communication, Matthew Dimario

Physics & Astronomy ETDs

Conventional measurement technology is unable to extract the most amount of information possible from coherent states of light. Non-Gaussian measurements which can count individual photons can surpass the sensitivity limits of ideal conventional strategies, and approach the ultimate limits achievable given by quantum mechanics. This thesis presents investigations and demonstrations of these unconventional measurements, which utilize coherent operations and single photon counting. This thesis shows that non-Gaussian measurements can outperform conventional strategies in estimation tasks as well as a variety of communication problems. This thesis also investigates novel approaches and algorithms for building robustness to static and dynamic noise which …


Applications Of Quantum Optics: From The Quantum Internet To Analogue Gravity, Anthony Brady Mar 2021

Applications Of Quantum Optics: From The Quantum Internet To Analogue Gravity, Anthony Brady

LSU Doctoral Dissertations

The aim of this thesis is to highlight applications of quantum optics in two very distinct fields: space-based quantum communication and the Hawking effect in analogue gravity. Regarding the former: We simulate and analyze a constellation of satellites, equipped with entangled photon-pair sources, which provide on-demand entanglement distribution ser- vices to terrestrial receiver stations. Satellite services are especially relevant for long-distance quantum-communication scenarios, as the loss in satellite-based schemes scales more favor- ably with distance than in optical fibers or in atmospheric links, though establishing quantum resources in the space-domain is expensive. We thus develop an optimization technique which balances …


Quantum Optics, Entanglement, And Bell's Theorem, Andrew D. Poverman Jan 2021

Quantum Optics, Entanglement, And Bell's Theorem, Andrew D. Poverman

Senior Projects Spring 2021

The field of quantum optics provides a wonderful setting in which to study fundamental aspects of quantum mechanics such as entanglement, Bell's theorem, and non-locality. This thesis presents theoretical discussions of qubits, entanglement, and Bell's theorem in addition to experimental discussions on the nature of photons, creating entangled states using Spontaneous Parametric Down-Conversion (SPDC), and a Bell Test with polarization entangled photons. The experimental sections are written to be useful as instructions for one to conduct these experiments on their own. By doing these experiments, one will gain familiarity with quantum optics experiments as well as a firmer grasp on …