Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Programming Languages and Compilers

PDF

City University of New York (CUNY)

Publications and Research

Graph execution

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Towards Safe Automated Refactoring Of Imperative Deep Learning Programs To Graph Execution, Raffi Takvor Khatchadourian Ph.D., Tatiana Castro Vélez, Mehdi Bagherzadeh, Nan Jia, Anita Raja Sep 2023

Towards Safe Automated Refactoring Of Imperative Deep Learning Programs To Graph Execution, Raffi Takvor Khatchadourian Ph.D., Tatiana Castro Vélez, Mehdi Bagherzadeh, Nan Jia, Anita Raja

Publications and Research

Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code—supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. Though hybrid approaches aim for the “best of both worlds,” using them effectively requires subtle considerations to make code amenable to safe, accurate, and efficient graph execution. We present our ongoing work on automated refactoring that assists developers in specifying whether …


Towards Safe Automated Refactoring Of Imperative Deep Learning Programs To Graph Execution, Raffi T. Khatchadourian Ph,D,, Tatiana Castro Vélez, Mehdi Bagherzadeh, Nan Jia, Anita Raja Sep 2023

Towards Safe Automated Refactoring Of Imperative Deep Learning Programs To Graph Execution, Raffi T. Khatchadourian Ph,D,, Tatiana Castro Vélez, Mehdi Bagherzadeh, Nan Jia, Anita Raja

Publications and Research

Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code—supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. Though hybrid approaches aim for the "best of both worlds," using them effectively requires subtle considerations to make code amenable to safe, accurate, and efficient graph execution. We present our ongoing work on automated refactoring that assists developers in specifying whether …