Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Amorphous-Crystalline Brush Block Copolymers: Phase Behavior, Rheology And Composite Design, Gayathri Kopanati Oct 2019

Amorphous-Crystalline Brush Block Copolymers: Phase Behavior, Rheology And Composite Design, Gayathri Kopanati

Doctoral Dissertations

Bottlebrush block copolymers are polymers with chemically distinct polymer side chains grafted onto a common backbone. The unique architecture induced properties make these materials attractive for applications such as photonic materials, stimuli responsive actuators and drug delivery vehicles to name a few. This dissertation primarily investigates the phase transitions and rheological behavior of amorphous-crystalline bottlebrush brush block copolymers and their composites. The temperature induced phase behavior is investigated using time resolved synchrotron X-ray source. Irrespective of volume fraction and backbone length, the samples display strong segregation even at high temperatures (200 °C) and there is no accessible order-disorder transition in …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida Oct 2019

Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida

Doctoral Dissertations

Ion-containing polymers are a unique class of materials for which strong electrostatic interactions dictate physical properties. By altering molecular parameters, such as the backbone chemical structure, the ion content, and the ion-pair identity, the structure and dynamics of these polymers can be altered. Further investigation of the molecular parameters that govern their structure-property relationships is critical for the future development of these polymeric materials. Particularly, the incorporation of ammonium-based counterions into these polymers offers a facile method to tune their electrostatic interactions and hydrophobicity. Applying this concept, a bulky dimethyloctylammonium (DMOA) counterion was used to modify the organic solubility of …


Double-Network Materials Via Frontal Polymerization & Supercritical Co2 Processing, Matthew Joseph Lampe Jul 2019

Double-Network Materials Via Frontal Polymerization & Supercritical Co2 Processing, Matthew Joseph Lampe

Doctoral Dissertations

This dissertation presents work focused on producing materials in non-equilibrium states by taking advantage of novel processing techniques. First, epoxy-based resins which can undergo radically promoted, cationic, thermal, frontal polymerization are investigated for their potential use as adhesives. These resins are found to be capable of sustaining propagating polymerization fronts between several different substrate materials, resulting in high levels of adhesion in some cases. In addition, a similar frontal resin was developed that can undergo sequential gelation and frontal polymerization. The gels are formed by radically crosslinking acrylate monomers within the epoxy resin. These gels can then be manipulated, and …