Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch Nov 2014

Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch

Doctoral Dissertations

Encapsulation of materials can be performed through the stabilization of fluid-fluid interfaces and the formation of emulsion droplets, which is commonly achieved with surfactants, including small molecules and polymers, as well as particles that are, typically, micron-scale in diameter. The worked contained in this dissertation centered on droplets that are stabilized by nanoparticles, including metallic nanoparticles and semiconductor quantum dots, which bring the conductive and fluorescent properties inherent to such nanoparticles into the droplet construction. Double emulsion droplets, both oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) were formed using nanoparticles as the only surfactant in solution. Different types of nanoparticles were found …


Surgical Adhesive From Mussel Mimetic Polymer, Jenna Desousa, Cori Jenkins, Jonathan Wilker Aug 2014

Surgical Adhesive From Mussel Mimetic Polymer, Jenna Desousa, Cori Jenkins, Jonathan Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Injuries involving damaged tissues are currently repaired through an invasive technique involving the use of screws, plates and sutures as support, which can damage these tissues. The biomedical field currently lacks an adhesive that can replace harmful implants. A surgical adhesive can provide a quick and easy alternative, which will minimize the risk of damaging healthy tissue in surgery. Inspiration for such materials can be found by looking at marine mussels as they are able to stick to nearly any surface, even in wet environments. Marine mussels affix themselves to different surfaces using adhesive plaques consisting of various proteins. Polymer …


Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


Effects Of Varying The Cure Profiles Of An Epoxy-Amine System, Patrick W. Hollingsworth May 2014

Effects Of Varying The Cure Profiles Of An Epoxy-Amine System, Patrick W. Hollingsworth

Honors Theses

The cure of an epoxy prepolymer with an amine hardener induces stress in thermosetting systems. The extent of residual stresses in the cured epoxy-amine thermosets are dependent on several factors; one of which is the cure profile utilized. The effect of cure profile on cure induced stresses of an epoxy-amine thermoset was examined in the current study. A difunctional epoxide based on diglycidyl ether of bisphenol-A (DGEBA) and a tetrafunctional amine curative were used to conduct this study. Two cure profiles were selected to prepare samples of varying degrees of stress in the cured thermosets. The first was constant heating …