Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Development And Testing Of A 325 Mhz Β0= 0.82 Single-Spoke Cavity, C. S. Hopper, Hyekyoung Park, J. R. Delayen Jan 2015

Development And Testing Of A 325 Mhz Β0= 0.82 Single-Spoke Cavity, C. S. Hopper, Hyekyoung Park, J. R. Delayen

Physics Faculty Publications

A single-spoke cavity operating at 325 MHz with geometric beta of 0.82 has been developed and tested. Initial results* showed high levels of field emission which limited the achievable gradient. Several rounds of helium processing significantly improved the cavity performance. Here we discuss the development process and report on the improved results.


A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle Aug 2014

A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle

STAR Program Research Presentations

One of the current programs at SLAC National Accelerator Laboratory is the Linac Coherent Light Source, or LCLS. Using the existing hardware of the last third of their linear accelerator (or “linac”), SLAC has created one of the most energetic X-ray free electron lasers (or “FEL”). Since 2009, LCLS has used this FEL to perform a wide range of experiments across all sciences, most notably ultrafast filming at the molecular scale. As requests for beam-time with this laser increases, SLAC is purposing a linac upgrade to better match this demand. This upgrade, named LCLS-II, will replace existing copper radio frequency …


Cryogenic Testing Of High-Velocity Spoke Cavities, C. S. Hopper, Hyekyoung Park, J. R. Delayen Jan 2014

Cryogenic Testing Of High-Velocity Spoke Cavities, C. S. Hopper, Hyekyoung Park, J. R. Delayen

Physics Faculty Publications

Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, β0 = 0.82 single-spoke cavity and a 500 MHz, β0 = 1 double-spoke cavity.