Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

2018

Eutrophication

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt Sep 2018

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address …


Herbivory And Eutrophication Mediate Grassland Plant Nutrient Responses Across A Global Climatic Gradient, T. Michael Anderson, Daniel M. Griffith, James B. Grace, Eric M. Lind, Peter B. Adler, Lori A. Biederman, Dana M. Blumenthal, Pedro Daleo, Jennifer Firn, Nicole Hagenah, W. Stanley Harpole, Andrew S. Macdougall, Rebecca L. Mcculley, Suzanne M. Prober, Anita C. Risch, Mahesh Sankaran, Martin Schütz, Eric W. Seabloom, Carly J. Stevens, Lauren L. Sullivan, Peter D. Wragg, Elizabeth T. Borer Apr 2018

Herbivory And Eutrophication Mediate Grassland Plant Nutrient Responses Across A Global Climatic Gradient, T. Michael Anderson, Daniel M. Griffith, James B. Grace, Eric M. Lind, Peter B. Adler, Lori A. Biederman, Dana M. Blumenthal, Pedro Daleo, Jennifer Firn, Nicole Hagenah, W. Stanley Harpole, Andrew S. Macdougall, Rebecca L. Mcculley, Suzanne M. Prober, Anita C. Risch, Mahesh Sankaran, Martin Schütz, Eric W. Seabloom, Carly J. Stevens, Lauren L. Sullivan, Peter D. Wragg, Elizabeth T. Borer

Plant and Soil Sciences Faculty Publications

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, …