Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Technical Note: On Uncertainties In Plant Water Isotopic Composition Following Extraction By Cryogenic Vacuum Distillation, Haoyu Diao, Philipp Schuler, Gregory R. Goldsmith, Rolf T. W. Siegwolf, Matthias Saurer, Marco M. Lehmann Nov 2022

Technical Note: On Uncertainties In Plant Water Isotopic Composition Following Extraction By Cryogenic Vacuum Distillation, Haoyu Diao, Philipp Schuler, Gregory R. Goldsmith, Rolf T. W. Siegwolf, Matthias Saurer, Marco M. Lehmann

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Recent studies have challenged the interpretation of plant water isotopes obtained through cryogenic vacuum distillation (CVD) based on observations of a large 2H fractionation. These studies have hypothesized the existence of an H-atom exchange between water and organic tissue during CVD extraction with the magnitude of H exchange related to relative water content of the sample; however, clear evidence is lacking. Here, we systematically tested the uncertainties in the isotopic composition of CVD-extracted water by conducting a series of incubation and rehydration experiments using isotopically depleted water, water at natural isotope abundance, woody materials with exchangeable H, and organic materials …


Prediction Of Cultivation Areas For The Commercial And An Early Flowering Wild Accession Of Salvia Hispanica L. In The United States, Mohammad Hassani, Thomas Piechota, Hagop S. Atamian Jul 2022

Prediction Of Cultivation Areas For The Commercial And An Early Flowering Wild Accession Of Salvia Hispanica L. In The United States, Mohammad Hassani, Thomas Piechota, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Salvia hispanica L., commonly known as chia, is a plant-based alternative to seafood and is rich in heart-healthy omega-3 fatty acid, protein, fiber, and antioxidants. In the Northern Hemisphere, chia flowering is triggered by the fall equinox (12-h light and dark, early October) and the seeds mature after approximately three months. Chia is sensitive to frost and end of season moisture which limits its cultivation to small areas in regions with temperate climate. The U.S. chia import has increased considerably over the years; however, chia is not widely cultivated in the United States. This study used the historical U.S. temperature …


Climatic Influences On Summer Use Of Winter Precipitation By Trees, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Rolf T. W. Siegwolf, James W. Kirchner May 2022

Climatic Influences On Summer Use Of Winter Precipitation By Trees, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Rolf T. W. Siegwolf, James W. Kirchner

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Trees in seasonal climates may use water originating from both winter and summer precipitation. However, the seasonal origins of water used by trees have not been systematically studied. We used stable isotopes of water to compare the seasonal origins of water found in three common tree species across 24 Swiss forest sites sampled in two different years. Water from winter precipitation was observed in trees at most sites, even at the peak of summer, although the relative representation of seasonal sources differed by species. However, the representation of winter precipitation in trees decreased with site mean annual precipitation in both …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations …