Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Applications Of Machine Learning Algorithms In Materials Science And Bioinformatics, Mohammed Quazi Jun 2022

Applications Of Machine Learning Algorithms In Materials Science And Bioinformatics, Mohammed Quazi

Mathematics & Statistics ETDs

The piezoelectric response has been a measure of interest in density functional theory (DFT) for micro-electromechanical systems (MEMS) since the inception of MEMS technology. Piezoelectric-based MEMS devices find wide applications in automobiles, mobile phones, healthcare devices, and silicon chips for computers, to name a few. Piezoelectric properties of doped aluminum nitride (AlN) have been under investigation in materials science for piezoelectric thin films because of its wide range of device applicability. In this research using rigorous DFT calculations, high throughput ab-initio simulations for 23 AlN alloys are generated.

This research is the first to report strong enhancements of piezoelectric properties …


Energy And Greenhouse Gas Savings For Leed-Certified U.S. Office Buildings Using Weighted Regression, Tian Liang Jan 2021

Energy And Greenhouse Gas Savings For Leed-Certified U.S. Office Buildings Using Weighted Regression, Tian Liang

Honors Papers

In this study, we studied the energy consumption and greenhouse gas emission performance of LEED-certified office buildings. We obtained the 2016 energy consumption and greenhouse gas emission data for 4002 office buildings from nine major US cities, including 522 buildings that we identified as LEED-certified. We discovered that LEED buildings used significantly more electricity percentagewise as their energy source. We also discovered that the locations and ages of buildings have significant effect on their performance. We removed the effect of locations and building ages using weighted regression. Our result showed that LEED office buildings used 11% less site energy, 9% …


Improving The Data Quality In Gravitation-Wave Detectors By Mitigating Transient Noise Artifacts, Kentaro Mogushi Jan 2021

Improving The Data Quality In Gravitation-Wave Detectors By Mitigating Transient Noise Artifacts, Kentaro Mogushi

Doctoral Dissertations

“The existence of gravitational waves (GWs), small perturbations in spacetime produced by accelerating massive objects was first predicted in 1916 as solutions of Einstein’s Theory of General Relativity (Einstein, 1916). Detecting and analyzing GWs produced by sources allows us to probe astrophysical phenomena.

The era of GW astronomy began from the first direct detection of the coalescence of a binary black hole in 2015 by the collaboration of the advanced Laser Interferometer Gravitational-wave Observatory (LIGO) (Aasi et al., 2015) and advanced Virgo (Abbott et al., 2016a). Since 2015, LIGO-Virgo detected about 50 confident transient events of GW signals (Abbott et …


9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association Sep 2019

9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association

Annual Postdoctoral Science Symposium Abstracts

The mission of the Annual Postdoctoral Science Symposium (APSS) is to provide a platform for talented postdoctoral fellows throughout the Texas Medical Center to present their work to a wider audience. The MD Anderson Postdoctoral Association convened its inaugural Annual Postdoctoral Science Symposium (APSS) on August 4, 2011.

The APSS provides a professional venue for postdoctoral scientists to develop, clarify, and refine their research as a result of formal reviews and critiques of faculty and other postdoctoral scientists. Additionally, attendees discuss current research on a broad range of subjects while promoting academic interactions and enrichment and developing new collaborations.


Stability And Application Of The K-Core Dynamical Model To Biological Networks, Francesca Beatrice Arese Lucini Sep 2019

Stability And Application Of The K-Core Dynamical Model To Biological Networks, Francesca Beatrice Arese Lucini

Dissertations, Theses, and Capstone Projects

The objective of the dissertation is to illustrate the importance of the k-core dynamical model, by first presenting the stability analysis of the nonlinear k-core model and compare its solution to the most widely used linear model. Second, I show a real world application of the k-core model to describe properties of neural networks, specifically, the transition from conscious to subliminal perception.


Daily And Seasonal Variability Of Offshore Wind Power On The Central California Coast And Statewide Demand, Matthew Douglas Kehrli Apr 2019

Daily And Seasonal Variability Of Offshore Wind Power On The Central California Coast And Statewide Demand, Matthew Douglas Kehrli

Physics

No abstract provided.


Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar Jan 2019

Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar

Dissertations, Master's Theses and Master's Reports

Coherent light - such as that from a laser - on interaction with biological tissues, undergoes scattering. This scattered light undergoes interference and the resultant field has randomly added phases and amplitudes. This random interference pattern is known as speckles, and has been the subject of multiple applications, including imaging techniques. These speckle fields inherently contain optical vortices, or phase singularities. These are locations where the intensity (or amplitude) of the interference pattern is zero, and the phase is undefined.

In the research presented in this dissertation, dynamic speckle patterns were obtained through computer simulations as well as laboratory setups …


On The Detection Of Statistical Heterogeneity In Rain Measurements, A. R. Jameson, Michael L. Larsen, A. Kostinski Jul 2018

On The Detection Of Statistical Heterogeneity In Rain Measurements, A. R. Jameson, Michael L. Larsen, A. Kostinski

Department of Physics Publications

The application of the Wiener–Khintchine theorem for translating a readily measured correlation function into the variance spectrum, important for scale analyses and for scaling transformations of data, requires that the data be wide-sense homogeneous (stationary), that is, that the first and second moments of the probability distribution of the variable are the same at all times (stationarity) or at all locations (homogeneity) over the entire observed domain. This work provides a heuristic method independent of statistical models for evaluating whether a set of data in rain is wide-sense stationary (WSS). The alternative, statistical heterogeneity, requires 1) that there be no …


Pseudo Power Law Statistics In A Jammed, Amorphous Solid, Jacob Brian Hass Jun 2018

Pseudo Power Law Statistics In A Jammed, Amorphous Solid, Jacob Brian Hass

Physics

Simulations have shown that in many solid materials, rearrangements within the solid obey power-law statistics. A connection has been proposed between these statistics and the ability of a system to reach a limit cycle under cyclic driving. We study experimentally a 2D jammed solid that reaches such a limit cycle. Our solid consists of microscopic plastic beads adsorbed at an oil-water interface and cyclically sheared by a magnetically driven needle. We track each particles trajectory in the solid to identify rearrangements. By associating particles both spatially and temporally, we can measure the extent of each rearrangement. We study specifically the …


Dust Devil Populations And Statistics, Ralph D. Lorenz, Brian K. Jackson Nov 2016

Dust Devil Populations And Statistics, Ralph D. Lorenz, Brian K. Jackson

Physics Faculty Publications and Presentations

The highly-skewed diameter and pressure drop distributions of dust devils on Earth and Mars are noted, and challenges of presenting and comparing different types of observations are discussed. The widely- held view that Martian dust devils are larger than Earth's is critically-assessed: the question is confounded somewhat by different observation techniques, but some indication of a ~3x larger population on Mars is determined. The largest and most intense (in a relative pressure sense) devils recorded are on Mars, although the largest reported number density is on Earth. The difficulties of concepts used in the literature of 'average' diameter, pressure cross …


On The Variability Of Drop Size Distributions Over Areas, A. R. Jameson, M. L. Larsen, A. B. Kostinski Mar 2015

On The Variability Of Drop Size Distributions Over Areas, A. R. Jameson, M. L. Larsen, A. B. Kostinski

Department of Physics Publications

Past studies of the variability of drop size distributions (DSDs) have used moments of the distribution such as the mass-weighted mean drop size as proxies for the entire size distribution. In this study, however, the authors separate the total number of drops Nt from the DSD leaving the probability size distributions (PSDs); that is, DSD = Nt × PSD. The variability of the PSDs are then considered using the frequencies of size [P(D)] values at each different drop diameter P(PD | D) over an ensemble of observations collected using a …


Energy Functional For Nuclear Masses, Michael Giovanni Bertolli Dec 2011

Energy Functional For Nuclear Masses, Michael Giovanni Bertolli

Doctoral Dissertations

An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional is based on Hohenberg-Kohn theory. Motivation for its form comes from both phenomenology and relevant microscopic systems, such as the three-level Lipkin Model. A global fit of the 17-parameter functional to nuclear masses yields a root- mean-square deviation of χ[chi] = 1.31 MeV, on the order of other mass models. The construction of the energy functional includes the development of a systematic method for selecting and testing possible functional terms. Nuclear radii are computed within …


Statistical Analysis Of The Usu Lidar Data Set With Reference To Mesospheric Solar Response And Cooling Rate Calculation, With Analysis Of Statistical Issues Affecting The Regression Coefficients, Troy Alden Wynn Dec 2010

Statistical Analysis Of The Usu Lidar Data Set With Reference To Mesospheric Solar Response And Cooling Rate Calculation, With Analysis Of Statistical Issues Affecting The Regression Coefficients, Troy Alden Wynn

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Though the least squares technique has many advantages, its possible limitations as applied in the atmospheric sciences have not yet been fully explored in the literature. The assumption that the atmosphere responds either in phase or out of phase to the solar input is ubiquitous. However, our analysis found this assumption to be incorrect. If not properly addressed, the possible consequences are bias in the linear trend coefficient and attenuation of the solar response coefficient.

Using USU Rayleigh lidar temperature data, we found a significant phase offset to the solar input in the temperatures that varies ±5 years depending on …


Probability Density Functions For Snir In Ds-Cdma, David W. Matolak Jun 2009

Probability Density Functions For Snir In Ds-Cdma, David W. Matolak

Faculty Publications

Analytical expressions for the probability density function of block-wise signal-to-noise-plus-interference ratio for both synchronous and asynchronous direct-sequence spread spectrum code-division multiple access systems are developed, for equal average energy signals on the Gaussian and Rayleigh flat fading channels. Using the standard Gaussian approximation for multi-user interference, accurate density approximations are obtained, which agree very well with computer simulation results.


Precise Measurement Of The Neutron Magnetic Form Factor Gnm In The Few-Gev² Region, Clas Collaboration, J. Lachniet, H. Bagdasaryan, S. Bültmann, N. Kalantarians, G. E. Dodge, T. A. Forest, G. Gavalian, C. E. Hyde-Wright, A. Klien, S. E. Kuhn, M. R. Niroula, R. A. Niyazov, L. M. Qin, L. B. Weinstein, J. Zhang Jan 2009

Precise Measurement Of The Neutron Magnetic Form Factor Gnm In The Few-Gev² Region, Clas Collaboration, J. Lachniet, H. Bagdasaryan, S. Bültmann, N. Kalantarians, G. E. Dodge, T. A. Forest, G. Gavalian, C. E. Hyde-Wright, A. Klien, S. E. Kuhn, M. R. Niroula, R. A. Niyazov, L. M. Qin, L. B. Weinstein, J. Zhang

Physics Faculty Publications

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q2 = 1.0–4.8  GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data


Bremsstrahlung In Α Decay Reexamined, H. Boie, Heiko Scheit, Ulrich D. Jentschura, F. Kock, M. Lauer, A. I. Milstein, Ivan S. Terekhov, Dirk Schwalm Jul 2007

Bremsstrahlung In Α Decay Reexamined, H. Boie, Heiko Scheit, Ulrich D. Jentschura, F. Kock, M. Lauer, A. I. Milstein, Ivan S. Terekhov, Dirk Schwalm

Physics Faculty Research & Creative Works

A high-statistics measurement of bremsstrahlung emitted in the α decay of 210Po has been performed, which allows us to follow the photon spectra up to energies of ~500keV. The measured differential emission probability is in good agreement with our theoretical results obtained within the quasiclassical approximation as well as with the exact quantum mechanical calculation. It is shown that, due to the small effective electric dipole charge of the radiating system, a significant interference between the electric dipole and quadrupole contributions occurs, which is altering substantially the angular correlation between the α particle and the emitted photon.


Minimo: A Search For Mini Proper Motion Stars In The Southern Sky, Charlie Thomas Finch May 2007

Minimo: A Search For Mini Proper Motion Stars In The Southern Sky, Charlie Thomas Finch

Physics and Astronomy Theses

I report 1684 new proper motion systems in the southern sky (declinations -90 degrees to -47 degrees) with 0.50 arcsec/yr > mu >= 0.18 arcsec/yr. This effort is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion search to lower proper motions than reported in Hambly et al. (2004); Henry et al. (2004); Subasavage et al. (2005a,b). Distance estimates are presented for the new systems, assuming that all stars are on the main sequence. I find that 34 systems are within 25 pc, including three systems --- SCR 0838-5855, SCR 1826-6542, and SCR 0630-7643AB --- anticipated to be within 10 pc. These …


Statistical Study Of Solar Radio Bursts, Gelu-Marius Nita Jan 2004

Statistical Study Of Solar Radio Bursts, Gelu-Marius Nita

Dissertations

The peak flux distribution of 40 years of solar radio burst data recorded by NOAA, as a function of frequency and time over a wide range of frequencies, was investigated to quantify the potential impact of radio bursts on wireless systems. Tables of fit parameters, which can be used to find burst occurrence rates in a number of frequency ranges, are presented. The typical power-law index of number density distribution, -1.8, is similar to that found in many hard X-ray studies. Significant changes were found in power-law index with frequency. The results may be useful for designers of current and …