Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Spectroscopy

Graduate Theses and Dissertations

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette Aug 2014

Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette

Graduate Theses and Dissertations

Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With …


Steady-State Switching And Dispersion/Absorption Spectroscopy Of Multistate Atoms Inside An Optical Ring Cavity, Jiteng Sheng Dec 2013

Steady-State Switching And Dispersion/Absorption Spectroscopy Of Multistate Atoms Inside An Optical Ring Cavity, Jiteng Sheng

Graduate Theses and Dissertations

This thesis mainly focuses on the experimental investigations of electromagnetically induced transparency (EIT) related phenomena in various systems involving multilevel atoms inside an optical ring cavity. Semiclassical methods, e.g. density-matrix equations, are used through out this thesis to simulate the experimental results. First, the cavity transmission spectrum can be significantly modified when multilevel atoms are placed inside an optical ring cavity. Such coupled atom-cavity systems are well explained by the intracavity dispersion/absorption properties. Specifically, three-level lambda-type, four-level N-type and double-lambda-type atoms inside an optical ring cavity are investigated by examining their cavity transmission spectra. Second, optical multistability (OM) has been …