Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Modeling Residence Time Distribution Of Chromatographic Perfusion Resin For Large Biopharmaceutical Molecules: A Computational Fluid Dynamic Study, Kevin Vehar Dec 2020

Modeling Residence Time Distribution Of Chromatographic Perfusion Resin For Large Biopharmaceutical Molecules: A Computational Fluid Dynamic Study, Kevin Vehar

KGI Theses and Dissertations

The need for production processes of large biotherapeutic particles, such as virus-based particles and extracellular vesicles, has risen due to increased demand in the development of vaccinations, gene therapies, and cancer treatments. Liquid chromatography plays a significant role in the purification process and is routinely used with therapeutic protein production. However, performance with larger macromolecules is often inconsistent, and parameter estimation for process development can be extremely time- and resource-intensive. This thesis aimed to utilize advances in computational fluid dynamic (CFD) modeling to generate a first-principle model of the chromatographic process while minimizing model parameter estimation's physical resource demand. Specifically, …


Infinite Volume Reconstruction Method Qed Pion Mass Corrections On The Lattice, Michael Riberdy Dec 2020

Infinite Volume Reconstruction Method Qed Pion Mass Corrections On The Lattice, Michael Riberdy

Honors Scholar Theses

We use the Infinite Volume Reconstruction Method to calculate the charged/neutral pion mass difference. The hadronic tensor is calculated on the lattice using a QCD+QED framework, and the mass shift is calculated with exponentially-suppressed finite volume errors. In this paper we discuss the Feynman diagrams relevant to the pion mass difference and we recapitulate the advantages of the Infinite Volume Reconstruction Method. We then discuss the extrapolation to the continuum limit, and report a charged/neutral pion mass difference of 4.52 MeV, which is within 1.44% of the accepted value.


A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu Jun 2020

A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu

Master's Theses

A numerical study was conducted to determine the effect of changing the camber of a winglet on the efficiency of a wing in two distinct flight conditions. Camber was altered via a simple plain flap deflection in the winglet, which produced a constant camber change over the winglet span. Hinge points were located at 20%, 50% and 80% of the chord and the trailing edge was deflected between -5° and +5°. Analysis was performed using a combination of three-dimensional vortex lattice method and two-dimensional panel method to obtain aerodynamic forces for the entire wing, based on different winglet camber configurations. …


On Negative Eigenvalues Of The Discrete Schrödinger Operator With Non-Local Potential, Zahriddin Muminov, Shukhrat Lakaev Apr 2020

On Negative Eigenvalues Of The Discrete Schrödinger Operator With Non-Local Potential, Zahriddin Muminov, Shukhrat Lakaev

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

On the d-dimensional lattice 𝕋d, d= 1, 2 the discrete Schrödinger operator Hλµ with non-local potential constructed via the Dirac delta function and shift operator is considered. The dependency of negative eigenvalues of the operator on the parameters is explicitly derived.


On Negative Eigenvalues Of The Discrete Schrödinger Operator With Non-Local Potential, Zahriddin Muminov, Shukhrat Lakaev Apr 2020

On Negative Eigenvalues Of The Discrete Schrödinger Operator With Non-Local Potential, Zahriddin Muminov, Shukhrat Lakaev

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

On the d-dimensional lattice 𝕋d, d= 1, 2 the discrete Schrödinger operator Hλµ with non-local potential constructed via the Dirac delta function and shift operator is considered. The dependency of negative eigenvalues of the operator on the parameters is explicitly derived.


Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone Jan 2020

Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone

Physics Faculty Publications

We use scanning tunneling microscopy (STM) and spectroscopy (STS), and x-ray photoelectron spectroscopy (XPS) to investigate the effect of nitrogen doping on the surface electronic and chemical structures of cutouts from superconducting Nb radio-frequency cavities. The goal of this work is to get insights into the fundamental physics and materials mechanisms behind the striking decrease of the surface resistance with the radio-frequency magnetic field, which has been observed on N-doped Nb cavities. Our XPS measurements reveal significantly more oxidized Nb 3d states and a thinner metallic suboxide layer on the N-doped Nb surfaces, which is also confirmed by tunneling spectroscopy …