Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Dft-Based Study Of Electric Field Effect On The Polarizability Of Three Ringed Nematic Liquid Crystal Molecules, Pranav Upadhyay, Mirtunjai Mishra, Ankur Trivedi, Jitendra Kumar, Asheesh Kumar, Devesh Kumar Dec 2020

Dft-Based Study Of Electric Field Effect On The Polarizability Of Three Ringed Nematic Liquid Crystal Molecules, Pranav Upadhyay, Mirtunjai Mishra, Ankur Trivedi, Jitendra Kumar, Asheesh Kumar, Devesh Kumar

Makara Journal of Science

Owing to its successful application to complex molecular systems, computational density functional theory (DFT) has been used to study the effect of an electric field on the molecular polarizability and HOMO–LUMO gap of 1-phenyl-4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}benzene (1) and its fluoro-, chloro-, and cyano- derivatives, namely, 1-fluoro-4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzene (2), 1-chloro-4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzene (3), and 4-(4-{2-[(1s,4r)-4-pentylcyclohexyl]ethyl}phenyl)benzonitrile (4). These molecules belong to the family of nematic liquid crystals with three rings: two benzene and one cyclohexane. Furthermore, two DFT approaches, namely, B3LYP and M062X, have been used to examine the results obtained. This study reveals a remarkable feature: the polarizability of these molecules follows nearly a step function …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Theoretical Modeling Of Metallic Compounds With Versatile Properties By Combining First-Principles Calculations And Global Structure Prediction Algorithms, Jinseon Park Aug 2020

Theoretical Modeling Of Metallic Compounds With Versatile Properties By Combining First-Principles Calculations And Global Structure Prediction Algorithms, Jinseon Park

Doctoral Dissertations

Improving the target properties of existing materials or finding new materials with enhanced functionality for practical applications is at the heart of the materials research. In this respect, the first-principles approaches, which have been successfully integrated into modern high- performance computers, have become an indispensable part of the materials research, providing a better understanding of existing materials and guidance on the design of new materials. Using state-of-the-art computational/theoretical approaches that couple global structure prediction with ab initio density functional theory calculations, we investigate structural and electronic properties of CsxO [cesium oxides], Li1+xMn2O4 [lithium …


Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier May 2020

Density Functional Theory Calculations Of Al Doped Hafnia For Different Crystal Symmetry Configurations, Joshua Steier

Seton Hall University Dissertations and Theses (ETDs)

Dogan et al.[1], investigated the causes of ferroelectricity in doped hafnia using ab initio methods. Similarly, we investigated the stability of Al doped hafnia using quantum mechanical methods.

There are many different phases of Hafnia: monoclinic, tetragonal, cubic and orthorhombic. Starting with the monoclinic phase of Hafnia, Hafnia undergoes phase transitions which result in different space groups. The temperature at which the tetragonal phase is induced is 2000 K and cubic phase is induced at 2900 K[1]. Different dielectric constants vary from phase to phase. The average dielectric constants are highest for the cubic and tetragonal phases. In order to …


Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde Apr 2020

Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde

Kirill Belashchenko Publications

This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital (LMTO) method is revisited in detail and developed further by the introduction of short-ranged tight-binding basis functions for full-potential calculations. The LMTO method is presented in both Green's function and wave function formulations for bulk and layered systems. The suite's full-potential LMTO code uses a sophisticated basis and augmentation method that allows an efficient and precise solution to the band problem at different levels of theory, …


Stable Anisotropic Single-Layer Of Rete$_2$: A First Principles Prediction, Mehmet Yağmurcukardeş Jan 2020

Stable Anisotropic Single-Layer Of Rete$_2$: A First Principles Prediction, Mehmet Yağmurcukardeş

Turkish Journal of Physics

In order to investigate the structural, vibrational, electronic, and mechanical features of single-layer ReTe$_2$ first-principles calculations are performed. Dynamical stability analyses reveal that single-layer ReTe$_2$ crystallize in a distorted phase while its 1H and 1T phases are dynamically unstable. Raman spectrum calculations show that single-layer distorted phase of ReTe$_2$ exhibits 18 Raman peaks similar to those of ReS$_2$ and ReSe$_2$. Electronically, single-layer ReTe$_2$ is shown to be an indirect gap semiconductor with a suitable band gap for optoelectronic applications. In addition, it is found that the formation of Re-units in the crystal induces anisotropic mechanical parameters. The in-plane stiffness and …


Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero Jan 2020

Development And Assesment Of Local Scaled Self-Interaction Corrected Density Functional Method With Simple Scaling Factor, Selim Romero

Open Access Theses & Dissertations

The Hohenberg-Kohn-Sham (HKS) density functional theory (DFT) is widely used to compute electronic structures of atoms, molecules, and solids. It is an exact theory in which ground state electron density plays the role of basic variable, same as the wavefunction does in quantum mechanics. The total ground state energy is a functional of electron density. The practical application of HKS DFT require approximation to the exchange-correlation energy functional. Many density functional approximations (DFAs) with various degree of sophistication and complexities have been developed. Depending on the complexity, these functionals include electron density, density gradients, density Laplacian, kinetic energy densities, Hartree-Fock …