Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Manufacture And Investigation Of Organic Composite Polymer Based Films For Advanced Flexible Solar Cells, Raffie Arshak Dec 2013

Manufacture And Investigation Of Organic Composite Polymer Based Films For Advanced Flexible Solar Cells, Raffie Arshak

Masters

Modern society has created big challenges in the area of sustainable supply of energy to satisfy the needs of growing population and to account for depleting fossil fuel resources. The Irish Government has set targets for the energy sector by 2020, with 33% of electricity to be generated from renewable sources. Organic photovoltaic devices offer several advantages over expensive silicon solar cells, including deposition of ultra-thin films by spin-coating, printing and spray-coating. This in turn provides for the exciting possibility to make lightweight, flexible solar cells for a broad range of existing and emerging applications for security, military and medicine. …


Photothermal Deflection Spectroscopy Of Amorphous, Nanostructured And Nanocomposite Thin Films, Muhammad Shafiq Ahmed Oct 2013

Photothermal Deflection Spectroscopy Of Amorphous, Nanostructured And Nanocomposite Thin Films, Muhammad Shafiq Ahmed

Electronic Thesis and Dissertation Repository

The energy needs of the modern world are growing day by day, while sources of non-renewable fossil fuels are limited, so there is a need to efficiently use the existing resources and explore renewable energy sources. In order to harvest, store and efficiently utilize renewable energy, we need to explore new materials and improve the performance of existing ones. Among others, hydrogenated amorphous silicon (a-Si:H) with high optical absorption in the visible range of electromagnetic spectrum, is a low cost material for solar cells. But the efficiency of such solar cells is comparatively low because of intrinsic defects associated with …


Investigations Into B-O Defect Formation-Dissociation In Cz-Silicon And Their Effect On Solar Cell Performance, Prakash M. Basnyat May 2013

Investigations Into B-O Defect Formation-Dissociation In Cz-Silicon And Their Effect On Solar Cell Performance, Prakash M. Basnyat

Dissertations

About 30% of the total market share of industrial manufacture of silicon solar cells is taken by single crystalline Czochralski (CZ) grown wafers. The efficiency of solar cells fabricated on boron-doped Czochralski silicon degrades due to the formation of metastable defects when excess electrons are created by illumination or minority carrier injection during forward bias. The recombination path can be removed by annealing the cell at about 200° C but recombination returns on exposure to light.

Several mono-crystalline and multi-crystalline solar cells have been characterized by methods such as laser beam induced current (LBIC), Four-Probe electrical resistivity etc. to better …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Extension To Pv Optics To Include Front Electrode Design In Solar Cells, Debraj Guhabiswas Jan 2013

Extension To Pv Optics To Include Front Electrode Design In Solar Cells, Debraj Guhabiswas

Dissertations

Proper optical designing of solar cells and modules is of paramount importance towards achieving high photovoltaic conversion efficiencies. Modeling softwares such as PV OPTICS, BIRANDY and SUNRAYS have been created to aid such optical designing of cells and modules; but none of these modeling packages take the front metal electrode architecture of a solar cell into account.

A new model, has been developed to include the front metal electrode architecture to finished solar cells for optical calculations. This has been implemented in C++ in order to add a new module to PV OPTICS (NREL’s photovoltaic modeling tool) to include …


Making Solar Cells, D. Venkataraman Jan 2013

Making Solar Cells, D. Venkataraman

Nanotechnology Teacher Summer Institutes

Overview of solar energy and photovoltaic cells. Making a cuprous oxide cell activity.


Organic Photovoltaics: A Charge Transfer Perspective In The Study Of Donor-Acceptor Systems, Marco Olguin Jan 2013

Organic Photovoltaics: A Charge Transfer Perspective In The Study Of Donor-Acceptor Systems, Marco Olguin

Open Access Theses & Dissertations

The present research involves the study of donor-acceptor (D/A) dyad complexes from a charge transfer energy perspective. The aim is to provide insight and predictive understanding into the charge transfer processes of the molecular-level components in donor-acceptor based organic solar cells using computational methods to describe photochemical processes at the quantum mechanical level within the Density Functional Theory (DFT) approximation. Predictive understanding is anchored in reproducing experimental results, wherein the present work a perturbative excited-state DFT method is described in detail and shown to give Charge Transfer (CT) energies in excellent agreement with benchmark experimental data. With an accurate excited …