Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Automated Synthesis Of Dynamically Corrected Quantum Gates, Kaveh Khodjasteh, Hendrik Bluhm, Lorenza Viola Oct 2012

Automated Synthesis Of Dynamically Corrected Quantum Gates, Kaveh Khodjasteh, Hendrik Bluhm, Lorenza Viola

Dartmouth Scholarship

Dynamically corrected gates are extended to non-Markovian open quantum systems where limitations on the available controls and/or the presence of control noise make existing analytical approaches unfeasible. A computational framework for the synthesis of dynamically corrected gates is formalized that allows sensitivity against non-Markovian decoherence and control errors to be perturbatively minimized via numerical search, resulting in robust gate implementations. Explicit sequences for achieving universal high-fidelity control in a singlet-triplet spin qubit subject to realistic system and control constraint are provided, which simultaneously cancel to the leading order the dephasing due to non-Markovian nuclear-bath dynamics and voltage noise affecting the …


Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe Aug 2012

Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe

Dartmouth Scholarship

We use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase (η=−π/2) where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing …


Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz Jan 2012

Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz

Dartmouth Scholarship

We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes. The multiband character of the model together with spin-orbit coupling are key to realizing such a topological superconductor. We characterize the topological phase diagram by using a partial Chern number sum, and show that the latter is physically related to the parity of the fermion number of the time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap into account, we also establish the possibility of a direct topological superconductor-to-topological insulator quantum phase transition.


Pbr, Epr, And All That Jazz, Matthew S. Leifer Jan 2012

Pbr, Epr, And All That Jazz, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

"In the past couple of months, the quantum foundations world has been abuzz about a new preprint entitled "The Quantum State Cannot be Interpreted Statistically" by Matt Pusey, Jon Barrett and Terry Rudolph (henceforth known as PBR). Since I wrote a blog post explaining the result, I have been inundated with more correspondence from scientists and more requests for comment from science journalists than at any other point in my career. Reaction to the result amongst quantum researchers has been mixed, with many people reacting negatively to the title, which can be misinterpreted as an attack on the Born rule. …


Response To Griffiths, Matthew S. Leifer Jan 2012

Response To Griffiths, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

"First of all, I would like to thank Prof. Griffith for his comments. The exchange has reminded me of the series of letters that appeared in Physics Today following the publication of an article by Chandralekha Singh, Mario Belloni, and Wolfgang Christian on improving the teaching of undergraduate quantum mechanics (see http://ptonline.aip.org/ journals/doc/PHTOAD-ft/vol_60/iss_3/8_1.shtml). In those responses, both Griffiths and Travis Norsen argued that students’ understanding of quantum mechanics would be vastly improved if they were taught more about the foundations of quantum theory, and I wholeheartedly agree with that sentiment. The thing is, Griffiths argued vociferously that this should be …


Review Of Elegance And Enigma: The Quantum Interviews, Matthew S. Leifer Jan 2012

Review Of Elegance And Enigma: The Quantum Interviews, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

A review of Elegance and Enigma: The Quantum Interviews, edited by Maximilian Schlosshauer.


Review Of The Mathematical Language Of Quantum Theory: From Uncertainty To Entanglement, Matthew S. Leifer Jan 2012

Review Of The Mathematical Language Of Quantum Theory: From Uncertainty To Entanglement, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

A book review of The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement by Teiko Heinosaari and Mario Ziman.