Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala Dec 2005

Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

A lattice-based quantum algorithm is presented to model the non-linear Schrödinger-like equations in 2 + 1 dimensions. In this lattice-based model, using only 2 qubits per node, a sequence of unitary collide (qubit-qubit interaction) and stream (qubit translation) operators locally evolve a discrete field of probability amplitudes that in the long-wavelength limit accurately approximates a non-relativistic scalar wave function. The collision operator locally entangles pairs of qubits followed by a streaming operator that spreads the entanglement throughout the two dimensional lattice. The quantum algorithmic scheme employs a non-linear potential that is proportional to the moduli square of the wave function. …


Using Genetic Algorithms To Map First-Principles Results To Model Hamiltonians: Application To The Generalized Ising Model For Alloys, Gus L. W. Hart, Volker Blum, Michael J. Walorski, Alex Zunger Oct 2005

Using Genetic Algorithms To Map First-Principles Results To Model Hamiltonians: Application To The Generalized Ising Model For Alloys, Gus L. W. Hart, Volker Blum, Michael J. Walorski, Alex Zunger

Faculty Publications

The cluster expansion method provides a standard framework to map first-principles generated energies for a few selected configurations of a binary alloy onto a finite set of pair and many-body interactions between the alloyed elements. These interactions describe the energetics of all possible configurations of the same alloy, which can hence be readily used to identify ground state structures and, through statistical mechanics solutions, find finite-temperature properties. In practice, the biggest challenge is to identify the types of interactions which are most important for a given alloy out of the many possibilities. We describe a genetic algorithm which automates this …