Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Theses/Dissertations

Optics

Institution
Publication Year
Publication

Articles 1 - 30 of 76

Full-Text Articles in Physical Sciences and Mathematics

Signal Processing Algorithms For Doppler Lidar Sensors, Samantha Grubb May 2024

Signal Processing Algorithms For Doppler Lidar Sensors, Samantha Grubb

Physics and Astronomy Honors Papers

Light detection and ranging (LiDAR) is a remote sensing technology that obtains relative distance and velocity measurements between a sensor and a defined target by using light transmitted and received from the target. FMCW Doppler LiDAR, a particular variant of LiDAR, functions by analyzing the frequency shift in the reflected light to determine the target's range and velocity. This technology plays a crucial role across various sectors including defense, aerospace, and automotive. This paper presents signal processing algorithms designed to optimize data obtained from Doppler LiDAR sensors. By applying various window functions to time domain data, the Signal-to-Noise Ratio (SNR) …


Investigating The Effects Of A Southward Flow In The Southeastern Florida Shelf Using Robotic Instruments, Alfredo Quezada Dec 2023

Investigating The Effects Of A Southward Flow In The Southeastern Florida Shelf Using Robotic Instruments, Alfredo Quezada

All HCAS Student Capstones, Theses, and Dissertations

We deployed a Slocum G3 glider fitted with an acoustic Doppler current profiler (ADCP), a Conductivity-Temperature-Depth sensor (CTD), optics sensor channels, and a propeller on the Southeastern Florida shelf. The ADCP and CTD provide continuous measurements of Northern and Eastern current velocity components, salinity, temperature, and density, throughout the water column in a high-current environment. The optics sensor channels are able to provide measurements of chlorophyll concentrations, colored dissolved organic matter (CDOM), and backscatter particle counts. Additionally, for one of the glider deployments, we deployed a Wirewalker wave-powered profiling platform system also fitted with an ADCP and a CTD in …


Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Tunable Linear And Nonlinear Metasurfaces Based On Hybrid Gold-Graphene Plasmons, Matthew Feinstein Sep 2023

Tunable Linear And Nonlinear Metasurfaces Based On Hybrid Gold-Graphene Plasmons, Matthew Feinstein

Dissertations, Theses, and Capstone Projects

Optical Metasurfaces are planar structures that are patterned with subwavelength structures and are very thin compared to the wavelength of light. Despite their thinness, these structured materials can strongly interact with incident light to effect the functionalities of conventional optical components, such as rotation of the polarization state, beam steering, lensing, spectral filtering, and holography, to name a few. Metasurfaces can also facilitate nonlinear optical effects, such as the mixing of beams at different frequencies to generate a beam at a new frequency.

The ability to alter the behavior of a metasurface during operation is highly desired for applications such …


Photonic Monitoring Of Atmospheric Fauna, Adrien P. Genoud Dec 2022

Photonic Monitoring Of Atmospheric Fauna, Adrien P. Genoud

Dissertations

Insects play a quintessential role in the Earth’s ecosystems and their recent decline in abundance and diversity is alarming. Monitoring their population is paramount to understand the causes of their decline, as well as to guide and evaluate the efficiency of conservation policies. Monitoring populations of flying insects is generally done using physical traps, but this method requires long and expensive laboratory analysis where each insect must be identified by qualified personnel. Lack of reliable data on insect populations is now considered a significant issue in the field of entomology, often referred to as a “data crisis” in the field. …


Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett Nov 2022

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett

Optical Science and Engineering ETDs

In this dissertation, I investigate the possibility of lasing and nonlinear phenomena in completely solid-state transverse Anderson localizing optical fibers (TALOFs). I examine three areas within this range of topics. The research in nonlinear phenomena focuses on four-wave mixing (FWM). FWM is of high interest in TALOFs due to the fact that guided localized modes of the fiber each have different propagation constants, and thus unique possible FWM pairs can be generated from the same input pump beam. I demonstrate the generation of FWM in the TALOF by pumping it with 532 nm light into a localized mode and observing …


Miniaturized Iii-V/ Si Hybrid Laser With An Integrated Modulator, Praveen Kumar Singaravelu Sep 2022

Miniaturized Iii-V/ Si Hybrid Laser With An Integrated Modulator, Praveen Kumar Singaravelu

Theses

Light interaction with microscopic and nanoscopic structures enable manipulation of its characteristics which can be used to detect objects in 3D sensing, propel satellites to space using photonic propulsion and transmit data through optical communication. For optical communication, the basic components are lasers, modulators and photodetectors. The development of CMOS microfabrication foundries helps to manufacture silicon-based photonic devices with high yield that is directly co-integrated with electronics in a single chip. However, the lack of emission of photons efficiently in silicon propelled the necessity of hybrid photonic devices that inherits the combined advantage of different materials i.e. functionality and volume. …


Computational Methods For Propagation Of Optical Fields With The Angle-Impact Wigner Function, Jeremy Wittkopp Aug 2022

Computational Methods For Propagation Of Optical Fields With The Angle-Impact Wigner Function, Jeremy Wittkopp

Legacy Theses & Dissertations (2009 - 2024)

In designing an optical setup for an experiment, one usually turns to simulations first in order to model the propagation of light through the proposed system. This way, the experimenter can determine if the system is operating as intended. In order for these simulations to be useful, they need to properly describe the propagation of light. In order to simplify calculations, most contemporary software makes assumptions on the nature of the light being propagated. Specifically, simulations typically consider optical fields that are beam-like (i.e., most of the rays comprising the field deviate only slightly in angle from the beam's primary …


Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar Jun 2022

Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar

Physics

The rising interest in quantum computing has led to new quantum systems being developed and researched. Among these are trapped neutral atoms which have several desirable features and may be configured and operated on using lasers in an optical lattice. This work describes the development of a new data acquisition system for use in tuning lasers near the precise hyperfine transition frequencies of Rb 87 atoms, a crucial step in the functionality of a neutral atom trap. This improves on previous implementations that were deprecated and limited in laser frequency sweep range. Integration into the experiment was accomplished using an …


Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers Jun 2022

Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers

Electrical Engineering

This product is a photophoretic trapping system which allows varying focal lengths to test which focal lengths are possible for trapping toner particles. This system establishes that there exists a maximum trapping distance limitation and is the first time the effect of focal length is studied in a photophoretic trapping system. Increasing photophoretic trapping focal length is necessary for improving this technology as a 3D display. The 3D imaging technology is realized by dragging a microscopic (micrometer-scale) particles with a laser beam to trace an image. This technology can display fully colored and high-resolution 3D images visible from almost any …


Numerical Methods For Optimal Transport And Optimal Information Transport On The Sphere, Axel G. R. Turnquist May 2022

Numerical Methods For Optimal Transport And Optimal Information Transport On The Sphere, Axel G. R. Turnquist

Dissertations

The primary contribution of this dissertation is in developing and analyzing efficient, provably convergent numerical schemes for solving fully nonlinear elliptic partial differential equation arising from Optimal Transport on the sphere, and then applying and adapting the methods to two specific engineering applications: the reflector antenna problem and the moving mesh methods problem. For these types of nonlinear partial differential equations, many numerical studies have been done in recent years, the vast majority in subsets of Euclidean space. In this dissertation, the first major goal is to develop convergent schemes for the sphere. However, another goal of this dissertation is …


Optomechanical Quantum Entanglement, Kahlil Y. Dixon Mar 2021

Optomechanical Quantum Entanglement, Kahlil Y. Dixon

LSU Doctoral Dissertations

As classical technology approaches its limits, exploration of quantum technologies is critical. Quantum optics will be the basis of various cutting-edge research and applications in quantum technology. In particular, quantum optics quite efficacious when applied to quantum networks and the quantum internet. Quantum Optomechanics, a subfield of quantum optics, contains some novel methods for entanglement generation. These entanglement production methods exploit the noise re-encoding process, which is most often associated with creating unwanted phase noise in optical circuits. Using the adapted two-photon formalism and experimental results, we simulate (in an experimentally viable parameter space) optomechanical entanglement generation experiments. These simulations …


Optical Study Of 2-D Detonation Wave Stability, Eulaine T. Grodner Mar 2021

Optical Study Of 2-D Detonation Wave Stability, Eulaine T. Grodner

Theses and Dissertations

Fundamental optical detonation study of detonations constricted to a 2-d plane propagation, and detonations propagating around a curve. All images were processed using modern image processing techniques. The optical techniques used were shadowgraph, Schlieren, and chemiluminescence. In the 2-Dstraight channels, it was determined wave stability was a factor of cell size. It was also determined the detonation wave thickness (area between the combustion and shockwave) was a factor of how much heat available for the detonation. For the detonations propagating around a curve, it was determined the three main classifications of wave stability were stable, unstable, and detonation wave restart. …


The Complex Propagation Of Light Explained Visually: How To Make A Hologram, Bruno Ray Becher Jan 2021

The Complex Propagation Of Light Explained Visually: How To Make A Hologram, Bruno Ray Becher

Senior Projects Spring 2021

The complexity of light’s wave nature is shown in the paths that light takes. In this project I will show several useful ways to imagine and predict how light will travel from one place to another. Once light is produced it does not immediately fill a room, instead it undulates through free space as if the space itself was a fluid. Once we understand the way light flows and interacts with its environment not only can we predict and control its shape with a hologram, but also discover clues which give secrets about where the light has been. Telescopes and …


The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero May 2020

An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero

Physics

This paper is an overview of lasers and their applications. The fundamentals of laser operation are covered as well as the various applications of advanced laser systems. The primary focus is to highlight some of the technological advancements made possible by lasers in the last half-century.


Construction Of A Hyperspectral Imager Using 3d-Printed And Off-The-Shelf Components, Joshua Moorhouse May 2020

Construction Of A Hyperspectral Imager Using 3d-Printed And Off-The-Shelf Components, Joshua Moorhouse

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences is working in collaboration with the Mechanical Engineering department to create a relatively cheap and modifiable hyperspectral imager. It is constructed using 3D-printed and off-the-shelf components from Edmund Optics and Amazon. The iteration created in this paper delivers spectrograms in the visible spectrum. The long-term goals of the camera are to create hyperspectral images from these spectrograms and to advance the imager into the infrared and near-infrared spectra. This imager is being developed to be used in the Arkansas Center for Space and Planetary Sciences environmental test chambers to further the scientific …


Novel Photon-Detector Models For Enhanced Quantum Information Processing, Elisha Siddiqui Mar 2020

Novel Photon-Detector Models For Enhanced Quantum Information Processing, Elisha Siddiqui

LSU Doctoral Dissertations

This work is devoted to the development of novel photon-detector models at room temperature using quantum optics elements. This work comprises of two photon-number-resolving detector (PNRD) models, and the application of PNRD in LIDAR. The first model is based on using a two-mode squeezing device to resolve photon number at room temperature. In this model we study the average intensity-intensity correlations signal at the output of a two-mode squeezing device with |N> and |α> as the two input modes. We show that the input photon-number can be resolved from the average intensity-intensity correlations. In particular, we show jumps in the …


The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate Mar 2020

The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate

Theses and Dissertations

Hollow-core photonic crystal fibers (HCPCFs) shows promise as a hybrid laser with higher nonlinear process limits and small beam size over long gain lengths. This work focuses on the design of a CW molecular nitrogen (N2) stimulated Raman laser. N2 offers Raman gains scaling up to 900 amg, scaling higher than H2. The cavity experiment showed the need to include Rayleigh scattering in the high pressure required for N2 Raman lasing. Even at relatively low pressure ssuch as 1,500 psi, high conversion percentages should be found if the fiber length is chosen based on …


Mult-Spectral Imaging Of Vegetation With A Diffractive Plenoptic Camera, Tristan R. Naranjo Mar 2020

Mult-Spectral Imaging Of Vegetation With A Diffractive Plenoptic Camera, Tristan R. Naranjo

Theses and Dissertations

Snapshot multi-spectral sensors allow for object detection based on its spectrum for remote sensing applications in air or space. By making these types of sensors more compact and lightweight, it allows drones to dwell longer on targets or the reduction of transport costs for satellites. To address this need, I designed and built a diffractive plenoptic camera (DPC) which utilized a Fresnel zone plate and a light field camera in order to detect vegetation via a normalized difference vegetation index (NDVI). This thesis derives design equations by relating DPC system parameters to its expected performance and evaluates its multi-spectral performance. …


Production Of Entangled Photons Via Spontaneous Parametric Down-Conversion, Logan P. Kaelbling Jan 2020

Production Of Entangled Photons Via Spontaneous Parametric Down-Conversion, Logan P. Kaelbling

Senior Projects Spring 2020

Quantum entanglement, a phenomenon in which the behavior of one particle is somehow immediately correlated with and informed by what is happening to a partner particle a long distance away, has been a pivotal part of the formulation of quantum theory as we know it today and is currently generating many promising avenues of research. As such, finding ways to reliably and inexpensively generate systems of entangled particles for research purposes has become crucial. For my project, I attempt to set up a system that generates energy- and polarization-entangled photons via a technique called spontaneous parametric down conversion. This method …


An Echo Of Light, Anaka Marie Wetch Jan 2020

An Echo Of Light, Anaka Marie Wetch

Senior Projects Spring 2020

My senior project film an Echo of Light is an experimental 16mm film exploring light as both a metaphysical and physical process. I became interested in light during my studies in holography, which is a medium revolving around the interference of light. I studied holography independently and with the guidance of professionals in the field. My holographic work is oriented around the natural world and its micro-constituents. I examined and photographed substances, such as salt, pyrite, and quartz with the scanning electron microscope at Bard. These materials have striking crystalline geometry which I intend to explore through the light dependent …


Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena Nov 2019

Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena

Physics & Astronomy ETDs

Scattering from randomly rough surfaces is a well-established sub area of electrodynamics. There remains much to be done since each surface and optical processes that may occur in within the scattering medium, and countless other scenarios, is different. There are also illumination models that describe lighting in a scene on the macroscopic scale where geometrical optics can be considered adequate. Of particular interest for us is the intersection of the physical scattering theories and the illumination models. We present two contributions: 1) A minimum of two independent images are needed since any opaque surface can be uniquely specified in terms …


A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that …


Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie Aug 2019

Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie

Optical Science and Engineering ETDs

The focus of this dissertation is the development and investigation of nested cavity mode-locked lasers and their resultant tailored frequency combs. A nested cavity is made up of two cavities, known as parents. One parent is a larger, active, 100MHz Ti:Saph oscillator and the other is a smaller, passive, 7GHz Fabry-Perot Etalon (FPE). Unlike standard frequency combs that are continuous, a tailored comb’s teeth are distributed in equally spaced groups where the center of each group corresponds to the resonance of the FPE and the side bands are determined by the resonances of the Ti:Saph. This unique coupling of the …


Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés May 2019

Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés

Optical Science and Engineering ETDs

This work modeled the early to middle successes achieved in the field of ultrafast, high peak power optics, beginning with the work of Nobel Prize winners Donna Strickland and Gérard Mourou in 1985. In our work, 100 fs light pulses of around 800 nm were generated by a Ti:Sapphire oscillator, then amplified to approximately 30 GW peak power using a chirped pulse amplification system that included regenerative and multi-pass amplifiers. As a verification of our pulses having high peak powers and ultrashort durations, they were then used to strike water, glass, and a Kerr Cell. Supercontinuum generation was observed as …


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo May 2019

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions, …


Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar Jan 2019

Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar

Dissertations, Master's Theses and Master's Reports

Coherent light - such as that from a laser - on interaction with biological tissues, undergoes scattering. This scattered light undergoes interference and the resultant field has randomly added phases and amplitudes. This random interference pattern is known as speckles, and has been the subject of multiple applications, including imaging techniques. These speckle fields inherently contain optical vortices, or phase singularities. These are locations where the intensity (or amplitude) of the interference pattern is zero, and the phase is undefined.

In the research presented in this dissertation, dynamic speckle patterns were obtained through computer simulations as well as laboratory setups …


Opticks:, Fyodor Andreievich Shiryaev Jan 2019

Opticks:, Fyodor Andreievich Shiryaev

Senior Projects Spring 2019

Senior Project submitted to The Division of Arts of Bard College.


Fast Objective Coupled Planar Illumination Microscopy, Cody Jonathan Greer Dec 2018

Fast Objective Coupled Planar Illumination Microscopy, Cody Jonathan Greer

Arts & Sciences Electronic Theses and Dissertations

Among optical imaging techniques light sheet fluorescence microscopy stands out as one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. This potential is especially poignant for neuroscience applications due to the fact that interactions between neurons transpire over mere milliseconds within tissue volumes spanning hundreds of cubic microns. However current-generation light sheet microscopes are limited by volume scanning rate and/or camera frame rate. We begin by reviewing the optical principles underlying light sheet fluorescence microscopy and the origin of these …