Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed Dec 2022

First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed

Graduate Theses and Dissertations

In this dissertation, we have thoroughly studied the effect of chemical and charge dopingon ferroelectrics (PbTiO3 and BaTiO3) and Rashba type semiconductor (BiTeI). In the first project, We investigate the polar instability and soft modes in electron-doped PbTiO3 using linear-response density functional calculations. Because, metallicity and ferroelectric-like polar distortion are mutually non-compatible, and their coexistence in the same system is an intriguing subject of fundamental interest in the field of structure phase transition. However, it is unclear what mechanism may extend the limit of metallicity that allows polar distortion. We find that ferroelectric instability can remarkably sustain up to an …


Structural And Electronic Properties Of Few-Layer Monochalcogenides, Brandon Joel Miller Jul 2021

Structural And Electronic Properties Of Few-Layer Monochalcogenides, Brandon Joel Miller

Graduate Theses and Dissertations

This work discusses a new class of materials with novel properties that have only recently begun being studied. These materials are two-dimensional group IV-VI monochalcogenides, so named because they are formed from group IV (carbon group) and group VI (chalcogens) elements. These materials display several interesting physical properties such as ferroelasticity and ferroelectricity, and the contents within Chapters Two, Three, and Four concern a collaborative effort between theory and experiment between our group at the University of Arkansas and Dr. Kai Chang at the Max Planck Institute of Microstructure Physics in Halle, Germany in studying these properties. This thesis is …


Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel May 2021

Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel

Graduate Theses and Dissertations

The aim of this dissertation is the investigation of the static and dynamical properties of the complex antiferroelectric materials using Effective Hamiltonian method and First principles calculations. In chapter 3, a novel elemental interatomic coupling in perovskite materials which bilinearly couples the antiferroelectric displacements of cations with the rotations of the oxygen octahedra. This new coupling explains a very complex crystal structure of prototypical antiferroelectric PbZrO3. My explanation provides a unified description of many other complex antipolar crystal structures in variety of perovskite materials, including the occurrence of incommensurate phases in some of them. In chapter 4, results and analysis …


Structural Studies To Determine The Mechanisms Supporting Multiferroic And Ferroelectric Properties Of Complex Oxides, Han Zhang May 2018

Structural Studies To Determine The Mechanisms Supporting Multiferroic And Ferroelectric Properties Of Complex Oxides, Han Zhang

Dissertations

Multiferroics are a class of materials which possess both magnetic and electrical polarization with possible coupling between them. They show promise to enable new sensors and data storage devices with novel features, such as the possibility of writing polarization bits with magnetic fields at low power. The coexisting magnetic and ferroelectric order parameters are usually weakly coupled, preventing practical use. The development and study of new classes of materials with large magnetoelectric couplings is of high importance. Understanding the structure of these materials is key to this effort.

As one class of these systems, the RX3(BO3)4 has …


Diffuse Scattering And Local Order In Lead-Based Relaxor Ferroelectrics, Matthew J. Krogstad Jan 2018

Diffuse Scattering And Local Order In Lead-Based Relaxor Ferroelectrics, Matthew J. Krogstad

Graduate Research Theses & Dissertations

Relaxor ferroelectrics are characterized by their dielectric permittivity, and some of these materials display outstanding electromechanical coupling, a property that makes them useful in applications from sonar and ultrasound to precision actuators. However, there is a surprising lack of consensus regarding the local structure of these materials and how it relates to their useful bulk properties. A common feature of many proposed mechanisms is the importance of short-range order differing from the long-range symmetry of the material. Such a difference between short-range and long-range order makes these materials ideal candidates for study via diffuse scattering, a technique sensitive to differences …


Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo Sep 2017

Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo

Dissertations, Theses, and Capstone Projects

In order to improve future generations of dielectric capacitors a deeper understanding of voltage-induced dielectric breakdown and electrical energy storage limitations is required. This dissertation presents the use of far-field optical second harmonic generation (SHG) polarimetry for probing structural defects and polar domains in linear and nonlinear perovskite dielectric ceramics. We investigated the formation of electric field-induced structural distortions at pristine Fe-doped SrTiO3 (Fe:STO) electrode interfaces, structural defect and strain formation due to oxygen vacancy migration in electrodegraded Fe:STO single crystals, and mixed tetragonal and rhombohedral phase domains in ferroelectric Zr-doped BaTiO3 (BZT) films exhibiting excellent …


Properties And Manipulation Of Ionic Liquid-Solid Interfaces In Complex Oxide Materials, Anthony Thomas Wong May 2017

Properties And Manipulation Of Ionic Liquid-Solid Interfaces In Complex Oxide Materials, Anthony Thomas Wong

Doctoral Dissertations

Ionic liquids are liquid salts that are bringing rapid changes to the field of solid electronic materials. The implementation of ionic liquids in conjunction with these solid materials produces interfacial effects, especially when a bias is applied across the ionic liquid, forming an electric double layer. Electric double layers in ionic liquids are unique in their formation and the interfacial charges that are orders of magnitude higher than conventional techniques they can impart, providing new techniques for device design and implementation. In chapter 1, the fundamentals of the solid state electronic and magnetic materials are introduced, along with ionic liquids, …


Complex Electric-Field Induced Phenomena In Ferroelectric/Antiferroelectric Nanowires, Ryan Christopher Herchig Apr 2017

Complex Electric-Field Induced Phenomena In Ferroelectric/Antiferroelectric Nanowires, Ryan Christopher Herchig

USF Tampa Graduate Theses and Dissertations

Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies …


The Role Of Partial Surface Charge Compensation In The Properties Of Ferroelectric And Antiferroelectric Thin Films, Elena Glazkova Oct 2016

The Role Of Partial Surface Charge Compensation In The Properties Of Ferroelectric And Antiferroelectric Thin Films, Elena Glazkova

USF Tampa Graduate Theses and Dissertations

Ferroelectric and antiferroelectric ultrathin films have attracted a lot of attention recently due to their remarkable properties and their potential to allow for device miniaturization in numerous applications. However, when the ferroelectric films are scaled down, it brings about an unavoidable depolarizing field. A partial surface charge compensation allows to control the residual depolarizing field and manipulate the properties of ultrathin ferroelectric films. In this dissertation we take advantage of atomistic first-principles-based simulations to expand our understanding of the role of the partial surface charge compensation in the properties of ferroelectric and antiferroelectric ultrathin films.

The application of our computational …


The Effects Of Strain And Vacancies On The Electric And Vibrational Properties Of Ferroelectric Batio3 From First-Principles, Aldo Serge Michael Raeliarijaona Jul 2015

The Effects Of Strain And Vacancies On The Electric And Vibrational Properties Of Ferroelectric Batio3 From First-Principles, Aldo Serge Michael Raeliarijaona

Graduate Theses and Dissertations

The studies of ferroelectricity (FE) are of technological significance because of the multitude of applicable properties that ferroelectric materials exhibit. The mastery, and control of these properties necessitate the knowledge of the fundamental physics governing these insulating materials.

In this dissertation I present the results of first-principles investigations of the behavior of the fundamental ferroelectric properties under strain, and in the presence of vacancies. In the first part I introduce the important FE properties, their common behavior, and their numerous valuable applications. Following this background on FEs, a review of theoretical methods is presented with topics such as: Density Functional …


Study Of Ferroelectric Oxides And Field Effect In Complex Oxides Heterostructures, Lu Jiang Aug 2014

Study Of Ferroelectric Oxides And Field Effect In Complex Oxides Heterostructures, Lu Jiang

Doctoral Dissertations

With the rapid development of technology, the need for novel materials and state-of-theart devices is growing fast. Complex oxides which have strongly correlated electrons are favorable candidates for materials industry, due to their rich phase diagrams and multiple functions. Especially, ferroelectric oxides is very promising materials in the industry for storage, due to their bistable polarization states triggered by external electrical field. This thesis is centered on ferroelectric oxides, analyzing their lattice structures and investigating the interface of ferroelectrics and other complex oxides to examine the potential of the heteostructures in the application in electronic devices.

The most notable feature …


The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash May 2014

The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash

USF Tampa Graduate Theses and Dissertations

The discovery of ferroelectricity at the nanoscale has incited a lot of interest in perovskite ferroelectrics not only for their potential in device application but also for their potential to expand fundamental understanding of complex phenomena at very small size scales. Unfortunately, not much is known about the dynamics of ferroelectrics at this scale. Many of the widely held theories for ferroelectric materials are based on bulk dynamics which break down when applied to smaller scales. In an effort to increase understanding of nanoscale ferroelectric materials we use atomistic resolution computational simulations to investigate the dynamics of polar perovskites. Within …


Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov May 2014

Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov

Graduate Theses and Dissertations

In this dissertation, a first-principle-based approach is developed to study magnetoelectric effect in multiferoic materials. Such approach has a significant predictive power and might serve as a guide to new experimental works. As we will discuss in the course of this work, it also gives an important insight to the underlying physics behind the experimentally observed phenomena.

We start by applying our method to investigate properties of a generic multiferroic material. We observe how magnetic susceptibility of such materials evolves with temperature and compare this evolution with the characteristic behavior of magnetic susceptibility for pure magnetic systems. Then we focus …