Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

The Time-Dependent Ionospheric Model Using A Tec-Driven Servo: An Investigation Of The Capabilities And Limitations, Jenny Rebecca Whiteley Aug 2023

The Time-Dependent Ionospheric Model Using A Tec-Driven Servo: An Investigation Of The Capabilities And Limitations, Jenny Rebecca Whiteley

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The ionosphere is a region of the atmosphere with a high density of electrons. These electrons affect the behavior of any electromagnetic wave that passes through the ionosphere. Communication and geolocation systems, such as traditional radio and Global Positioning Systems, depend on emitted electromagnetic signals being picked up by a receiver. The presence of the ionosphere affects the behavior of the signal and the quality of the service. Hence, the interactions between electromagnetic waves and the ionosphere provide a major motivation to understand, research, and successfully model and predict the ionosphere and its physical phenomena. This study focused on determining …


A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler Jun 2023

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler

Physics

Gamma rays principally interact with matter through Compton scattering, photoelectric effect, pair production, and triplet production. The focus of this simulation is to study the theoretical energy spectrum created by gamma rays from a Cesium-137 source, which produces gamma photons with an energy of 0.662 MeV. At this energy level, most interactions are results of Compton scatters and the photoelectric effect. Therefore, this simulation only models those two effects on gamma rays. Using Monte Carlo methods and the Metropolis algorithm to sample the probability distributions of the two effects allowed for the simulation of gamma rays in a Sodium Iodide …


Diffusion-Driven Aggregation Of Particles In Quasi-2d Membranes, Oscar Gullickson Rausis Jun 2023

Diffusion-Driven Aggregation Of Particles In Quasi-2d Membranes, Oscar Gullickson Rausis

Physics

Many biological membranes can be modeled as two-dimensional (2D) viscous fluid sheets surrounded by three-dimensional (3D) fluids of different viscosity. Such membranes are dubbed quasi-2D as they exhibit properties of both 2D and 3D fluids. The Saffman length is a parameter that describes the energy exchange between the membrane and bulk fluids and controls the cross-over from 2D to 3D hydrodynamics. We aim to model diffusion-driven aggregation of particles embedded in a quasi-2D membrane. It is known that hydrodynamic interactions between solute particles significantly reduce their aggregation rate in 3D fluids. It is expected that in quasi-2D membranes the reduction …


Hydrodynamic And Physicochemical Interactions Between An Active Janus Particle And An Inactive Particle, Jessica S. Rosenberg Jun 2023

Hydrodynamic And Physicochemical Interactions Between An Active Janus Particle And An Inactive Particle, Jessica S. Rosenberg

Dissertations, Theses, and Capstone Projects

Active matter is an area of soft matter science in which units consume energy and turn it into autonomous motion. Groups of these units – whether flocks of birds, bacterial colonies, or even collections of synthetically-made active particles – may exhibit complex behavior on large scales. While the large-scale picture is of great importance, so is the microscopic scale. Studying the individual particles that make up active matter will allow us to understand how they move, and whether and under what circumstances their activity can be controlled.

Here we delve into the world of active matter by studying colloidal-sized (100 …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Self-Consistent Effects Of The Recirculating Plasmapshere On The Development Of Storm Time Dynamics In The Inner Magnetosphere., Christian-Andrew Bagby-Wright May 2023

Self-Consistent Effects Of The Recirculating Plasmapshere On The Development Of Storm Time Dynamics In The Inner Magnetosphere., Christian-Andrew Bagby-Wright

Physics Dissertations

The near Earth space environment is a highly coupled system. The Interplanetary Magnetic Field (IMF) interacts with the magnetosphere in myriad ways depend on the orientation of the IMF to the magnetosphere. The magnetic fields of the magnetosphere and the IMF trap plasma and carry the plasma with it as both magnetic fields evolve over time. This plasma can in turn interact with other plasmas, carried by other field lines, affecting the dynamics of the other population and the magnetic field lines of both populations. The nature, frequency, and importance of interactions between different plasma, or magnetic fields, varies greatly …