Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Series

2001

Electron

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Tunable Local Polariton Modes In Semiconductors, Michael G. Foygel, Alexey Yamilov, Lev I. Deych, Alexander A. Lisyansky Sep 2001

Tunable Local Polariton Modes In Semiconductors, Michael G. Foygel, Alexey Yamilov, Lev I. Deych, Alexander A. Lisyansky

Physics Faculty Research & Creative Works

We study the local states within the polariton band gap that arise due to deep defect centers with strong electron-phonon coupling. Electron transitions involving deep levels may result in alteration of local elastic constants. In this case, substantial reversible transformations of the impurity polariton density of states occur, which include the appearance/disappearance of the polariton impurity band, and its shift and/or the modification of its shape. These changes can be induced by thermo- and photoexcitation of the localized electron states or by trapping of injected charge carriers. We develop a simple model, which is applied to the Op center …


Quantum Phase Transition Of Itinerant Helimagnets, Thomas Vojta, Rastko Sknepnek Aug 2001

Quantum Phase Transition Of Itinerant Helimagnets, Thomas Vojta, Rastko Sknepnek

Physics Faculty Research & Creative Works

We investigate the quantum phase transition of itinerant electrons from a paramagnet to a state which displays long-period helical structures due to a Dzyaloshinskii instability of the ferromagnetic state. In particular, we study how the self-generated effective long-range interaction recently identified in itinerant quantum ferromagnets is cut off by the helical ordering. We find that for a sufficiently strong Dzyaloshinskii instability the helimagnetic quantum phase transition is of second order with mean-field exponents. In contrast, for a weak Dzyaloshinskii instability the transition is analogous to that in itinerant quantum ferromagnets, i.e., it is of first order, as has been observed …


Electronic Structure Of Superconducting Mgb₂ And Related Binary And Ternary Borides, Nadezhda I. Medvedeva, Alexander L. Ivanovskii, Julia E. Medvedeva, Arthur J. Freeman Jun 2001

Electronic Structure Of Superconducting Mgb₂ And Related Binary And Ternary Borides, Nadezhda I. Medvedeva, Alexander L. Ivanovskii, Julia E. Medvedeva, Arthur J. Freeman

Physics Faculty Research & Creative Works

First-principles full potential linear muffin-tin orbital-generalized gradient approximation electronic structure calculations of the new medium-Tc superconductor (MTSC) MgB2 and related diborides indicate that superconductivity in these compounds is related to the existence of Px,y-band holes at the γ point. Based on these calculations, we explain the absence of medium-Tc superconductivity for BeB2, AlB2, ScB2, and YB2. The simulation of a number of MgB2-based ternary systems using a supercell approach demonstrates that (i) the electron doping of MgB2 (i.e., MgB2-yXy with X=Be, …