Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Physics

Atom Trap

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Automation Of The Transition Identification Procedure For Trapping Rubidium Atoms In A Magneto-Optical Trap, Michael P. Fletcher May 2022

Automation Of The Transition Identification Procedure For Trapping Rubidium Atoms In A Magneto-Optical Trap, Michael P. Fletcher

Physics

The words “quantum computer” often conjure images of science fiction and unrealistic technology from an impossible future. Some may even believe that they aren’t real or are only theoretical. The truth is that quantum computers are real, tangible systems with real life uses and rooted in credible scientific research. Today, many groups of scientists collaborate on research into better ways of implementing and improving quantum computing techniques. This paper will be addressing the systems required and phenomena used to achieve neutral atom trapping for quantum computation. This thesis will outline the physical phenomena involved with the frequency tuning process for …


Characterizing Double And Triple Laser Beam Interference Patterns In The Context Of Trapping Atoms For Quantum Computing, Ian E. Powell Jan 2015

Characterizing Double And Triple Laser Beam Interference Patterns In The Context Of Trapping Atoms For Quantum Computing, Ian E. Powell

Physics

We propose two optical neutral atom traps for quantum computing involving the intersection of two or three laser beams. We simulate both the intensity and the potential energy of the interference pattern. From these simulations we create animations of how the potential energy and intensity change with varying angles of separation between the laser beams in the system. We parameterize lines through our interference pattern and fit simple harmonic oscillator potential energies to the potential energy wells calculated to characterize our interference pattern’s atom trapping capabilities. Finally, we investigate a possible quantum entanglement routine by observing how the geometry of …


High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray Dec 2014

High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray

Physics

Two circuits were designed, built, and tested for the purpose of aiding in the transfer of 87Rb atoms from a MOT to dipole traps and for characterizing the final dipole traps. The first circuit was a current switch designed to quickly turn the magnetic fields of the MOT off. The magnetic coil switch was able to reduce the magnetic field intensity to 5 % of its initial value after 81 μs. The second circuit was an analog signal switch designed to turn the modulation signal of an AOM off. The analog switch was able to reduce the modulation signal intensity …