Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Predicting Densities And Elastic Moduli Of Sio2-Based Glasses By Machine Learning, Yong-Jie Hu, Ge Zhao, Mingfei Zhang, Bin Bin, Tyler Del Rose, Qian Zhao, Qan Zu, Yang Chen, Xuekun Sun, Maarten De Jong, Multiple Additional Authors Jan 2020

Predicting Densities And Elastic Moduli Of Sio2-Based Glasses By Machine Learning, Yong-Jie Hu, Ge Zhao, Mingfei Zhang, Bin Bin, Tyler Del Rose, Qian Zhao, Qan Zu, Yang Chen, Xuekun Sun, Maarten De Jong, Multiple Additional Authors

Mathematics and Statistics Faculty Publications and Presentations

Chemical design of SiO2-based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic moduli of SiO2-based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional space with multiple (>10) types of additive oxides besides SiO2. Our machine learning approach relies on a training set …


A New Method For Multi-Bit And Qudit Transfer Based On Commensurate Waveguide Arrays, Jovan Petrovic, J. J. P. Veerman Mar 2018

A New Method For Multi-Bit And Qudit Transfer Based On Commensurate Waveguide Arrays, Jovan Petrovic, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and …


A Finite Difference Method For Off-Fault Plasticity Throughout The Earthquake Cycle, Brittany A. Erickson, Eric M. Dunham, Arash Khosravifar Aug 2017

A Finite Difference Method For Off-Fault Plasticity Throughout The Earthquake Cycle, Brittany A. Erickson, Eric M. Dunham, Arash Khosravifar

Mathematics and Statistics Faculty Publications and Presentations

We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiationdamping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor …


Periodic State Revivals In Commensurate Waveguide Arrays, Jovan Petrovic, J. J. P. Veerman Jan 2015

Periodic State Revivals In Commensurate Waveguide Arrays, Jovan Petrovic, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

Emerging optical and quantum computers require hardware capable of coherent transport of and operations on quantum states. Here, we investigate finite optical waveguide arrays with linear coupling as means of efficient and compact coherent state transfer. Coherent transfer with periodic state revivals is enabled by engineering coupling coefficients between neighbouring waveguides to yield commensurate eigenvalue spectrum. Particular cases of finite arrays have been actively studied to achieve the perfect state transfer by mirroring the input into the output state.

We explore a much wider scope of coherent propagation and revivals of both the state amplitude and phase. We analytically solve …


A Locking-Free Hp Dpg Method For Linear Elasticity With Symmetric Stresses, Jamie Bramwell, Leszek Demkowicz, Jay Gopalakrishnan, Weifeng Qiu Jan 2012

A Locking-Free Hp Dpg Method For Linear Elasticity With Symmetric Stresses, Jamie Bramwell, Leszek Demkowicz, Jay Gopalakrishnan, Weifeng Qiu

Mathematics and Statistics Faculty Publications and Presentations

We present two new methods for linear elasticity that simultaneously yield stress and displacement approximations of optimal accuracy in both the mesh size h and polynomial degree p. This is achieved within the recently developed discontinuous Petrov- Galerkin (DPG) framework. In this framework, both the stress and the displacement ap- proximations are discontinuous across element interfaces. We study locking-free convergence properties and the interrelationships between the two DPG methods.


How Students Use Mathematical Resources In An Electrostatics Context, Dawn C. Meredith, Karen A. Marrongelle Jun 2008

How Students Use Mathematical Resources In An Electrostatics Context, Dawn C. Meredith, Karen A. Marrongelle

Mathematics and Statistics Faculty Publications and Presentations

We present evidence that although students’ mathematical skills in introductory calculus-based physics classes may not be readily applied in physics contexts, these students have strong mathematical resources on which to build effective instruction. Our evidence is based on clinical interviews of problem solving in electrostatics, which are analyzed using the framework of Sherin’s symbolic forms. We find that students use notions of “dependence” and “parts-of-a-whole” to successfully guide their work, even in novel situations. We also present evidence that students’ naive conceptions of the limit may prevent them from viewing integrals as sums.


Single-Particle Model For A Granular Ratchet, Albert J. Bae, Welles Antonio Martinez Morgado, J. J. P. Veerman, Giovani L. Vasconcelos Jan 2002

Single-Particle Model For A Granular Ratchet, Albert J. Bae, Welles Antonio Martinez Morgado, J. J. P. Veerman, Giovani L. Vasconcelos

Mathematics and Statistics Faculty Publications and Presentations

A simple model for a granular ratchet corresponding to a single grain bouncing off a vertically vibrating sawtooth-shaped base is studied. Depending on the model parameters, horizontal transport is observed in both the preferred and unfavoured directions. A phase diagram is presented indicating the regions in parameter space where the different regimes (no current, normal current, and current reversal) occur.


Soliton Stability In A Z (2) Field Theory, J. J. P. Veerman, D. Bazeia, Fernando Moraes Jan 1999

Soliton Stability In A Z (2) Field Theory, J. J. P. Veerman, D. Bazeia, Fernando Moraes

Mathematics and Statistics Faculty Publications and Presentations

We investigate the stability of the coupled soliton solutions of a two-component Z(2) vector fieldmodel, in contraposition to similar solutions of a Z(2)×Z(2)model recently introduced. We demonstrate that the coupled soliton solutions of the Z(2) model are classically unstable.