Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Laser-Induced Breakdown Spectroscopy For Analysis Of High Density Methane-Oxygen Mixtures, Matthew Dackman Dec 2014

Laser-Induced Breakdown Spectroscopy For Analysis Of High Density Methane-Oxygen Mixtures, Matthew Dackman

Masters Theses

The applicability of laser-induced breakdown spectroscopy (LIBS) toward greater than atmospheric density combustion diagnostics is examined. Specifically, this involves ascertaining the feasibility of measuring chemical equivalence ratios directly from atomic emission spectra at high density. The need for such measurement arises from the desire to quantify real time, localized combustion performance in weakly mixed flows. Insufficiently mixed flows generally result in unwanted byproducts, possess the propensity for overall combustion instability, and are increasingly likely to experience localized flame extinction.

We simulate methane/oxygen combustion in ambient pressures ranging 1 to 4 atmospheres, demonstrating these results to be analogous to what would …


Design And Model Of The Frame For Hagrid (Hybrid Array Of Gamma Ray Detectors), Santiago Munoz Dec 2014

Design And Model Of The Frame For Hagrid (Hybrid Array Of Gamma Ray Detectors), Santiago Munoz

Masters Theses

Transfer reactions in inverse kinematics have provided critical information in the study of exotic nuclei. However, transfer reactions with charged particles suffer from poor resolution. The measurement of gamma-rays offers several advantages: they provide not only good resolution in measurements but also other information about the nuclei like lifetimes of unstable states. The combination of these two methods would be the ideal situation to gather information about nuclear structure.

HAGRiD, which stands for The Hybrid Array of Gamma Ray Detectors, is a LaBr3(Ce) [lanthanum bromide crystal with a cerium activator] scintillation array to measure gamma rays from transfer reactions and …


Thick Target Yield Of Th-229 Via Low Energy Proton Bombardment Of Th-232, Justin Reed Griswold Aug 2014

Thick Target Yield Of Th-229 Via Low Energy Proton Bombardment Of Th-232, Justin Reed Griswold

Masters Theses

Actinium-225 is one of the more effective radioisotopes used in alpha radioimmunotherapy. Due to its ten-day half-life, it is more efficient to create its precursor, 229Th [Thorium-229] (t1/2[half-life] = 7932 ± 55 years). In this work, 229Th was produced via 40 MeV [Mega electron Volts] proton bombardment of a thick 232Th [Thorium-232] target. The irradiation took place at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab (ORNL). The target, consisting of 23 stacked natural thorium foils (137 mg/cm2 [milligrams per square centimeter] each), was irradiated with 50 nA [nanoamps] of …


Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters Aug 2014

Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters

Masters Theses

Free radicals are atoms or molecules with an odd number of electrons in an outer shell. Since electrons typically occur in pairs, this leaves one electron that is unpaired. In seek of another electron to pair with, free radicals react with and steal electrons from neighboring molecules, which then become free radicals themselves. This can start a chain reaction, cascading into large scale damage.

Ionizing radiation can tear through molecules, just as bullets can tear through things that we see. If free radicals can be detected, and seen to increase in a material upon radiation exposure, this can indicate molecular …


Structure Analysis Of Sn Bilayer Films On Si (111), Weisong Tu Aug 2014

Structure Analysis Of Sn Bilayer Films On Si (111), Weisong Tu

Masters Theses

Chemical doping is a well-established method for controlling the electronic properties of bulk semiconductors and, e.g, complex oxide materials. In this process, dopant atoms are located at substitutional lattice locations, from where they introduce free charge carriers to the host material. These carriers greatly improve the electrical conductivity of the host material and can even induce an insulator-metal transition at high doping levels. Dopants, however, also introduce scattering centers that are detrimental to conductivity, especially in low-dimensional systems such as nanowires and ultrathin films. These problems can be overcome by using a modulation doping approach in which the dopant atoms …


Aluminum Monoxide Emission Measurements Following Laser-Induced Breakdown For Plasma Characterization, David Michael Surmick Aug 2014

Aluminum Monoxide Emission Measurements Following Laser-Induced Breakdown For Plasma Characterization, David Michael Surmick

Masters Theses

In this work, spectroscopic emissions from laser ablated aluminum samples are used to characterize the time dependent decay of laser-induced plasma. The plasma is created by tightly focusing nanosecond pulsed laser radiation. Time resolved measurements of the plasma are made with a gated, intensified linear diode array coupled to an optical multichannel analyzer and/or an intensified charged coupled device. Time resolution is achieved by synchronizing the laser with the measurement rate of the array detector.

Computed diatomic molecular aluminum monoxide emissions were used to infer the temperature of the plasma as a function of time. This was completed by comparing …


The Isotope Effect On Proton Conduction And Glass Transition In Phosphoric Acid, Maximilian Ferdinand Heres Aug 2014

The Isotope Effect On Proton Conduction And Glass Transition In Phosphoric Acid, Maximilian Ferdinand Heres

Masters Theses

Hydrogen fuel cells combine hydrogen and oxygen to create water and electricity. Polymer electrolyte membranes (PEM) make up barriers within the fuel cell allowing only protons to pass through, while keeping other components separate. Many PEM contain phosphoric acid (PA) as a building block due to its excellent proton conducting properties. Improved ionic conductivity in PEM can lead to the development of better, more efficient fuel cells.

While ionic conductivity in PA at high temperatures is extensively characterized, the low temperature dynamics are not so well explored. Below the glass transition, molecular motion is frozen and proton motion is forced …


Electron Capture By Multiply Charged Ions From Molecular Targets, Justin Harris Apr 2014

Electron Capture By Multiply Charged Ions From Molecular Targets, Justin Harris

Masters Theses

State-selective differential cross sections for single-electron capture processes in collisions of Neq+ (q=2, 3, 5) ions with H2O and CO2 have been studied experimentally at laboratory collisions energies between 45 and 250 eV, and at scattering angles between 0o and 7:20o by means of translational energy-gain spectroscopy technique. The translational energy spectra show that only a few final states are populated depending on the projectile's charge state, laboratory scattering angle, and the collision energy. In addition, these measurements show that the dominant reaction channels are due to non-dissociative electron capture into excited states of …


Forbidden Fe Ii Emission Line Fluxes From The Weigelt Knots Of Eta Carinae, S. Towers Apr 2014

Forbidden Fe Ii Emission Line Fluxes From The Weigelt Knots Of Eta Carinae, S. Towers

Masters Theses

Eta Carinae is an unparalleled object crossing many divisions of astrophysics. It has multiple, complicated and dynamic processes leading to absorption and emission spectra across all wavelengths from radio to hard x-ray. The spectra differ spatially across Eta Carinae's extended envelope and are changing rapidly over time.

The Weigelt Knots of Eta Carinae's ejecta emit spectra of numerous forbidden iron species lines, rare on Earth, but prevalent in the unique conditions surrounding this star. The Weigelt Knots' unique conditions occur almost nowhere else, making Eta Carinae, useful not only for understanding massive stars similar to it, but for understanding the …


Microwave Assisted Reconstruction Of Optical Interferograms For Distributed Fiber Optics Sensing & Characterization Of Pcb Dielectric Properties Using Two Striplines On The Same Board, Lei Hua Jan 2014

Microwave Assisted Reconstruction Of Optical Interferograms For Distributed Fiber Optics Sensing & Characterization Of Pcb Dielectric Properties Using Two Striplines On The Same Board, Lei Hua

Masters Theses

"A new concept, the microwave-assisted reconstruction of an optical interferogram for distributed sensing, was developed to resolve both the position and reflectivity of each sensor along an optical fiber. This approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The optical spectrum of each sensor can be reconstructed by sweeping the optical wavelength and detecting the modulation signal. A series of cascaded fiber optic extrinsic Fabry-Perot interferometric sensors was used to prove the concept. The microwave-reconstructed interferogram matched well with those recorded individually from a traditional optical spectrometer. The application of distributed strain measurement was also investigated. …