Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Graduate Theses and Dissertations

Pure sciences

Articles 1 - 30 of 42

Full-Text Articles in Physical Sciences and Mathematics

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Discord And Global Discord In Systems Of Coupled Quantum Dots In Driven Cavities With Dissipation, And A Method For The Calculation Of Global Discord, Willa Danielle Rawlinson Dec 2016

Discord And Global Discord In Systems Of Coupled Quantum Dots In Driven Cavities With Dissipation, And A Method For The Calculation Of Global Discord, Willa Danielle Rawlinson

Graduate Theses and Dissertations

In the field of quantum information, which is subdivided into quantum computing and quantum cryptography, quantum correlations are essential for a performance or security boost not achievable with classical means. Various quantum correlation measures exist for evaluating a state’s potential to be a qubit (quantum bit). Entanglement, or nonseparability of quantum states, is the older, better known class of measures. However, for a mixed state, quantum entanglement is an incomplete measure of quantumness. Quantum discord, and its multibody extension global discord, encompass all quantum correlations. We study systems of coupled quantum dots using these measures.

We study the discord of …


Artificial Quantum Many-Body States In Complex Oxide Heterostructures At Two-Dimensional Limit, Xiaoran Liu Dec 2016

Artificial Quantum Many-Body States In Complex Oxide Heterostructures At Two-Dimensional Limit, Xiaoran Liu

Graduate Theses and Dissertations

As the representative family of complex oxides, transition metal oxides, where the lattice,

charge, orbital and spin degrees of freedom are tightly coupled, have been at the forefront

of condensed matter physics for decades. With the advancement of state-of-the-art heteroepitaxial deposition techniques, it has been recognized that combining these oxides on the atomic scale, the interfacial region offers great opportunities to discover emergent phenomena and tune materials' functionality. However, there still lacks general guiding principles for experimentalists, following which one can design and fabricate artificial systems on demand. The main theme of this dissertation is to devise and propose some …


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill Dec 2016

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Graduate Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these metallic …


Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Graduate Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient …


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Graduate Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO …


Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu Aug 2016

Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu

Graduate Theses and Dissertations

A low-temperature photoluminescence (PL) study was conducted on low-temperature metal modulation epitaxy (MME) grown GaN. By comparing the PL signal from high temperature grown GaN buffer layers, and MME grown cap layers on top of the buffer layers, it was found that MME grown GaN cap has a significantly greater defect-related emission. The band edge PL from MME grown GaN found to be 3.51eV at low temperature. The binding energy of the exciton in GaN is determined to be 21meV through temperature dependence analysis. A PL peak at 3.29eV was found in the luminescence of the MME grown cap layer, …


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Graduate Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness …


Viscous Liquids And The Glass Transition At Extremely High Pressure: Optical Techniques Applied To Cumene In A Diamond Anvil Cell, Timothy Craig Ransom May 2016

Viscous Liquids And The Glass Transition At Extremely High Pressure: Optical Techniques Applied To Cumene In A Diamond Anvil Cell, Timothy Craig Ransom

Graduate Theses and Dissertations

This dissertation presents the results from experiments studying the pressure-dependence of properties associated with the glass transition in the glass-forming liquid cumene. Through the use of a diamond anvil cell, we achieve extremely high pressures over 40,000 atmospheres. A new technique is refined to directly measure the glass transition temperature Tg extremely accurately, and we show that thermodynamic scaling is capable of describing the liquid�glass transition boundary up to record-high pressures. Optical techniques are also implemented to probe the system dynamics in the viscous regime leading up to the glass transition. We present laser light-scattering measurements of the dynamic susceptibility …


Experimental And Computational Studies Of Cortical Neural Network Properties Through Signal Processing, Wesley Patrick Clawson May 2016

Experimental And Computational Studies Of Cortical Neural Network Properties Through Signal Processing, Wesley Patrick Clawson

Graduate Theses and Dissertations

Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized …


Dark Matter Halo Concentration And The Evolution Of Spiral Structure In N-Body, Barred Spiral Galaxies, Jazmin Esmeralda Berlanga Medina Dec 2015

Dark Matter Halo Concentration And The Evolution Of Spiral Structure In N-Body, Barred Spiral Galaxies, Jazmin Esmeralda Berlanga Medina

Graduate Theses and Dissertations

Motivated by the evidence of relationships between pitch angle (the tightness of spiral arm structure in the disk), P, and various indicators of central mass concentration, as well as the theoretical relationship between halo mass concentration and the density of visible matter in the central part of the galaxy, we look at a possible relationship between P and cvir (the virial concentration of the dark matter halo) in N-body simulations of barred, spiral galaxies. We also look at the evolution of pitch angle over time in higher temporal resolution than any data currently available in the literature. We find that …


Static And Dynamical Properties Of Ferroelectrics And Related Material In Bulk And Nanostructure Forms, Zhigang Gui Jul 2015

Static And Dynamical Properties Of Ferroelectrics And Related Material In Bulk And Nanostructure Forms, Zhigang Gui

Graduate Theses and Dissertations

Ferroelectrics (FE) and multiferroics (MFE) have attracted a lot of attentions due to their rich and novel properties. Studies towards FE and MFE are of both fundamental and technological importance. We use a first-principles-based effective Hamiltonian method, conventional ab-initio packages and linear-scale three-dimension fragment method to investigate several important issues about FE and MFE. Tuning the properties of FE and MFE films are essential for miniaturized device applications, which can be realized through epitaxial strain and growth direction. In this dissertation, we use the effective Hamiltonian method to study (i) BaTiO 3 films grown along the (110) pseudocubic direction on …


The Effects Of Strain And Vacancies On The Electric And Vibrational Properties Of Ferroelectric Batio3 From First-Principles, Aldo Serge Michael Raeliarijaona Jul 2015

The Effects Of Strain And Vacancies On The Electric And Vibrational Properties Of Ferroelectric Batio3 From First-Principles, Aldo Serge Michael Raeliarijaona

Graduate Theses and Dissertations

The studies of ferroelectricity (FE) are of technological significance because of the multitude of applicable properties that ferroelectric materials exhibit. The mastery, and control of these properties necessitate the knowledge of the fundamental physics governing these insulating materials.

In this dissertation I present the results of first-principles investigations of the behavior of the fundamental ferroelectric properties under strain, and in the presence of vacancies. In the first part I introduce the important FE properties, their common behavior, and their numerous valuable applications. Following this background on FEs, a review of theoretical methods is presented with topics such as: Density Functional …


Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers Jul 2015

Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers

Graduate Theses and Dissertations

Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies.

The first of the three methods involves a relatively new set …


Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari May 2015

Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

There has been a growing interest in using low cost material as a substrate for the large grained polycrystalline silicon photovoltaic devices. The main property of those devices is the potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this work, different parameters have been studied in order to optimize the growth …


Mirror Buckling Transitions In Freestanding Graphene Membranes Induced Through Scanning Tunneling Microscopy, James Kevin Schoelz May 2015

Mirror Buckling Transitions In Freestanding Graphene Membranes Induced Through Scanning Tunneling Microscopy, James Kevin Schoelz

Graduate Theses and Dissertations

Graphene has the ability to provide for a technological revolution. First isolated and characterized in 2004, this material shows promise in the field of flexible electronics. The electronic properties of graphene can be tuned by controlling the shape of the membrane. Of particular interest in this endeavor are the thermal ripples in graphene membranes. Years of theoretical work by such luminaries as Lev Landau, Rudolf Peierls, David Mermin and Herbert Wagner have established that 2D crystals should not be thermodynamically stable. Experimental research on thin films has supported this finding. Yet graphene exists, and freestanding graphene films have been grown …


Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov May 2014

Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov

Graduate Theses and Dissertations

In this dissertation, a first-principle-based approach is developed to study magnetoelectric effect in multiferoic materials. Such approach has a significant predictive power and might serve as a guide to new experimental works. As we will discuss in the course of this work, it also gives an important insight to the underlying physics behind the experimentally observed phenomena.

We start by applying our method to investigate properties of a generic multiferroic material. We observe how magnetic susceptibility of such materials evolves with temperature and compare this evolution with the characteristic behavior of magnetic susceptibility for pure magnetic systems. Then we focus …


Reconstructions At The Interface In Complex Oxide Heterostructures With Strongly Correlated Electrons, Benjamin Gray May 2014

Reconstructions At The Interface In Complex Oxide Heterostructures With Strongly Correlated Electrons, Benjamin Gray

Graduate Theses and Dissertations

Strongly correlated oxides exhibit a rich spectrum of closely competing orders near the localized-itinerant Mott insulator transition leaving their ground states ripe with instabilities susceptible to small perturbations such as lattice distortions, variation in stoichiometry, magnetic and electric fields, etc. As the field of interfacial engineering has matured, these underlying instabilities in the electronic structure of correlated oxides continue to be leveraged to manipulate existing phases or search for emergent ones. The central theme is matching materials across the interface with disparate physical, chemical, electronic, or magnetic structure to harness interfacial reconstructions in the strongly coupled charge, spin, orbital, and …


Steady-State Switching And Dispersion/Absorption Spectroscopy Of Multistate Atoms Inside An Optical Ring Cavity, Jiteng Sheng Dec 2013

Steady-State Switching And Dispersion/Absorption Spectroscopy Of Multistate Atoms Inside An Optical Ring Cavity, Jiteng Sheng

Graduate Theses and Dissertations

This thesis mainly focuses on the experimental investigations of electromagnetically induced transparency (EIT) related phenomena in various systems involving multilevel atoms inside an optical ring cavity. Semiclassical methods, e.g. density-matrix equations, are used through out this thesis to simulate the experimental results. First, the cavity transmission spectrum can be significantly modified when multilevel atoms are placed inside an optical ring cavity. Such coupled atom-cavity systems are well explained by the intracavity dispersion/absorption properties. Specifically, three-level lambda-type, four-level N-type and double-lambda-type atoms inside an optical ring cavity are investigated by examining their cavity transmission spectra. Second, optical multistability (OM) has been …


Structural Properties Of Ferroelectric Lead (Zirconium0.5,Titanium0.5)Oxygen3 Nanotube Array And Electronic Structure Of Lao Delta-Doped Strontium Titanate, Rajendra Prasad Adhikari Aug 2013

Structural Properties Of Ferroelectric Lead (Zirconium0.5,Titanium0.5)Oxygen3 Nanotube Array And Electronic Structure Of Lao Delta-Doped Strontium Titanate, Rajendra Prasad Adhikari

Graduate Theses and Dissertations

In this Dissertation we begin with two introductions on: 1) ferroelectricity and related phenomena, and 2) novel properties of Oxide electronics and the generation of two dimensional electron gas. We then give theoretical background of density functional theory (including LDA+U) and pseudopotentials. The first part of research work is about structural, polarization, and dielectric properties of ferroelectric Lead Zirconate Titanate (PZT) solid solution in the form of a nanotube array, embedded in a matrix medium of different ferroelectric strengths. We use the effective Hamiltonian derived from first-principles and finite-temperature Monte Carlo methods to determine the various properties. We revealed different …


Fabrication Of Tungsten Tips Suitable For Scanning Probe Microscopy By Electrochemical Etching Methods, Gobind Basnet Aug 2013

Fabrication Of Tungsten Tips Suitable For Scanning Probe Microscopy By Electrochemical Etching Methods, Gobind Basnet

Graduate Theses and Dissertations

The fabrication of metal tips is becoming an interesting field for scientists who are working in spectroscopy measurements. A significant amount of work has already been done in the tips fabrication process. Metal tips used to analyze the surface of materials play a key role in the scanning tunneling microscope (STM) technique. It's remarkable quality that it is used to study the surface of material at the atomic level.

There are various methods used in the tips fabrication process. Of diverse methods, three different electrochemical etching methods: submerged method, single lamella drop-off method, and double lamella drop-off method are commonly …


Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis Aug 2013

Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis

Graduate Theses and Dissertations

Advancements in integrated nanoelectronics will continue to require the use of unique materials or systems of materials with diverse functionalities in increasingly confined spaces.

Hence, research on finite-dimensional systems strive to unearth and expand the knowledge of fundamental physical properties in certain key materials which exhibit numerous concurrent and exploitable functions.

Correspondingly, ferroelectric nanostructures, which particularly display a plethora of complex phenomena, prevalent in countless fields of research, are noteworthy candidates. Presently, however, the assimilation of zero-(0D) and one-dimensional (1D) ferroelectric into micro- or nano-electronics has been lagging, in part due to a lack of applied and fundamental studies but …


Active Galactic Nuclei Mergers And Outflows: Observations From Optical And Ultraviolet Emission Lines, Robert Scott Barrows May 2013

Active Galactic Nuclei Mergers And Outflows: Observations From Optical And Ultraviolet Emission Lines, Robert Scott Barrows

Graduate Theses and Dissertations

I have investigated the nature of a subset of active galactic nuclei (AGN) which show double peaks in their characteristic optical and ultraviolet emission lines. I have performed this investigation through studies of the broad emission line regions (BLRs), which are produced less than 1 pc from the central supermassive black hole (SMBH), and the narrow emission line regions (NLRs), which originate at larger (kpc) distances. The BLR studies consist of detailed line modeling of two individual quasars with double-peaked broad emission line profiles. The modeling suggests there are two primary interpretations of the complex broad line profiles. The first …


Interactions Between Ions And Lysenin Nanochannels And Their Potential Applications As Biosensors, Radwan Awwad Al Faouri May 2013

Interactions Between Ions And Lysenin Nanochannels And Their Potential Applications As Biosensors, Radwan Awwad Al Faouri

Graduate Theses and Dissertations

Lysenin is classified as a pore-forming toxin protein that is isolated from the earthworm Eisenia fetida and consists of 297 amino acids [1]. Lysenin inserts large conducting pores (3.0-4.7 nm in diameter) into artificial membranes (BLM) which include sphingomyelin. These pores (channels) are open and oriented upon insertion into the bilayer lipid membrane. Lysenin channels gate at positive voltages (voltage-induced gating), but not at negative voltages. Lysenin pores also exhibit activity modulation in response to changes in ionic strength and pH, indicating that electrostatic interaction is responsible for Lysenin conductance activities. In this line of inquiries, and by modulating Lysenin …


Quantum Resonant Beats And Revivals In The Morse Oscillators And Rotors, Zhenhua Li May 2013

Quantum Resonant Beats And Revivals In The Morse Oscillators And Rotors, Zhenhua Li

Graduate Theses and Dissertations

Analytical eigenfunctions and eigenvalues for the Morse oscillator were applied to investigate the quantum resonant beats and revivals of wave packet propagation. A concise way for exact prediction of the complete revival period of the Morse oscillator was given for the first time. It was suggested that any complete period was made of integer numbers of the minimum or fundamental period. Within the fundamental period, the anharmonicity of this oscillator appeared to cause interesting space-time phenomena that include relatively simple Farey-sum revival structures. In addition, a simple sum of two Morse oscillators led to a double-Morse well whose geometric symmetry …


The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings May 2013

The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings

Graduate Theses and Dissertations

In this dissertation, the relationship between the geometry of ion-beam sculpted solid-state nanopores and their ability to analyze single DNA molecules using resistive pulse sensing is investigated. To accomplish this, the three dimensional shape of the nanopore is determined using energy filtered and tomographic transmission electron microscopy. It is shown that this information enables the prediction of the ionic current passing through a voltage biased nanopore and improves the prediction of the magnitude of current drop signals when the nanopore interacts with single DNA molecules. The dimensional stability of nanopores in solution is monitored using this information and is improved …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …