Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 155

Full-Text Articles in Physical Sciences and Mathematics

Backgrounds Study And Ai-Powered Waveform Processing For Legend Experiment, Laxman Paudel Jan 2024

Backgrounds Study And Ai-Powered Waveform Processing For Legend Experiment, Laxman Paudel

Dissertations and Theses

Neutrinoless Double-Beta Decay (0$\nu \beta \beta $) is a presumed rare nuclear decay process and is considered the most promising way to prove the Majorana nature of neutrinos, that is, neutrinos are their own antiparticles. The discovery of \zero decay would also enhance our understanding of nuclear physics, astrophysical observations, and physical processes in the early Universe. The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay (LEGEND) is a phased $^{\mathrm{76}}$Ge-based 0$\nu \beta \beta $ decay experimental program, aiming for the discovery potential of a half-life of 0$\nu \beta \beta $ beyond 10$^{\mathrm{28}}$ years. The first phase, LEGEND-200, comprises 200 …


Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten Aug 2023

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten

Dissertations and Theses

For the safety of both equipment and human life, it is important to identify the location of orphaned radioactive material as quickly and accurately as possible. There are many factors that make radiation localization a challenging task, such as low gamma radiation signal strength and the need to search in unknown environments without prior information. The inverse-square relationship between the intensity of radiation and the source location, the probabilistic nature of nuclear decay and gamma ray detection, and the pervasive presence of naturally occurring environmental radiation complicates localization tasks. The presence of obstructions in complex environments can further attenuate the …


Development Of Advanced Germanium Detectors For Rare Event Physics, Sanjay Bhattarai Jan 2023

Development Of Advanced Germanium Detectors For Rare Event Physics, Sanjay Bhattarai

Dissertations and Theses

High Purity Germanium (HPGe) detectors are widely used in rare-event physics searches for dark matter, neutrinoless double-beta decay, and solar neutrinos. This dissertation fo- cuses on improving crystal quality by controlling the impurity concentration, dislocation density, and growth environment as well as developing advanced Ge detectors for various physics applications. The dissertation presents experimental investigations of electrical conduction mechanisms in p-type amorphous germanium (a-Ge), which is used as an elec- trical contact material in HPGe detectors. By measuring the surface leakage current from three high-purity planar Ge detectors, we determine the localization length and hopping parameters in a-Ge. The dissertation …


Development Of Novel Hpge Detector For Rare Event Physics, Mathbar Singh Raut Jan 2023

Development Of Novel Hpge Detector For Rare Event Physics, Mathbar Singh Raut

Dissertations and Theses

This dissertation focuses on the enhancement of crystal quality in High Purity Germanium (HPGe) detectors, which play a crucial role in rare-event physics investigations such as dark matter detection, neutrinoless double-beta decay, geo-neutrinos, and solar neutrinos. The primary objective of this research is to improve crystal quality by controlling impurity concentration, dislocation density, and growth environment. Additionally, the development of advanced Ge detectors for various physics applications is explored. One significant aspect examined in this dissertation is the investigation of systematic errors associated with the Hall effect system. The goal is to identify a reliable technique that minimizes the systematic …


Background Discrimination Of A Neutrino Detector With Dense Neural Networks, Perry Siehien Jan 2023

Background Discrimination Of A Neutrino Detector With Dense Neural Networks, Perry Siehien

Dissertations and Theses

Neutrinos are subatomic particles that weakly interact with matter due to their neutral charge and small cross section. Detectors that search for neutrinos require sensitive instrumentation, which makes them susceptible to various background sources such as gamma rays. Additionally, coherent elastic neutrino-nucleus scattering events, or CEvNS, are the weakest neutrino interactions at 1-25 keV, making them exceptionally difficult to observe. To understand the physics of CEvNS events within the detector material, the recoil signatures of relevant interactions must be determined. Traditional analysis methods are effective, but cannot be applied to energies below 50 keV, due to the overlap of discrimination …


Possibilities For Inertial Electrostatic Confinement Fusion, Jeffrey Edward Black Dec 2022

Possibilities For Inertial Electrostatic Confinement Fusion, Jeffrey Edward Black

Dissertations and Theses

While most of the fusion energy research is focused on magnetic confinement, there have been several alternative confinement methods aimed at the development of smaller and less expensive reactors. A number of these devices utilize a spherically convergent beam of recirculating ions, a technique known as inertial electrostatic confinement (IEC). This study looks at several aspects of IEC devices, including measurements of the fusion rate of an IEC device with a wire mesh electrode cathode, and a solid titanium cathode. In addition, several computational studies were performed to explore the possibilities for IEC fusion. These include development of a 1D-1P …


System Design For The Quantification Of Microbial Motility In Extreme Environments, Megan Marie Dubay Aug 2022

System Design For The Quantification Of Microbial Motility In Extreme Environments, Megan Marie Dubay

Dissertations and Theses

Motility of microorganisms is understudied but provides useful insights into their behavior. Organisms' ability to move autonomously changes how they interact with their environment--finding nutrients, interacting with other organisms, and avoiding unfavorable conditions. Understanding motility features can also be used to identify specific species, such as the identification of Vibrio cholerae in human samples. Motility might also be used as evidence of life existing in even the most extreme environments on Earth, and possibly beyond. Specialized microscopy systems can be required to examine the motility of microorganisms due to the nature of the environments to which the instruments are exposed. …


Methodologies For Quantum Circuit And Algorithm Design At Low And High Levels, Edison Tsai Jun 2022

Methodologies For Quantum Circuit And Algorithm Design At Low And High Levels, Edison Tsai

Dissertations and Theses

Although the concept of quantum computing has existed for decades, the technology needed to successfully implement a quantum computing system has not yet reached the level of sophistication, reliability, and scalability necessary for commercial viability until very recently. Significant progress on this front was made in the past few years, with IBM planning to create a 1000-qubit chip by the end of 2023, and Google already claiming to have achieved quantum supremacy. Other major industry players such as Intel and Microsoft have also invested significant amounts of resources into quantum computing research.

Any viable computing system requires both hardware and …


Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler Jun 2022

Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler

Dissertations and Theses

Photoemission electron microscopy (PEEM) is an imaging method which uses electrons excited through the photoelectric effect to characterize a sample surface with nanometer-level resolution. In PEEM, a high intensity laser excites electrons from the surface of the material and electron optics are used to form an image from the intensity and spatial distribution of the photoemission from the sample. The goal of this research was to study and maximize light confinement, which was accomplished using plasmonic nanostructures. Surface plasmons represent oscillations in the electron density of a material and can occur along the transition interface between a metal and a …


Characterization Of High Mobility Channels For Use In Quantum Computing Devices, Payam Amin Mar 2022

Characterization Of High Mobility Channels For Use In Quantum Computing Devices, Payam Amin

Dissertations and Theses

Quantum computing promises computation that is fundamentally beyond the reach of classical computers. For the realization of a full-scale quantum computer, millions of quantum bits need to be fabricated on an integrated circuit and operated at cryogenic temperatures. Silicon and silicon-germanium based electron spin quantum bits have the advantage of leveraging decades of semiconductor industry knowledge for high volume manufacturability.

During the process development of any semiconductor device, material characterization is essential to understand and improve the process. Transmission electron microscopy is the only technique that could offer localized high spatial resolution characterization. In this work we have introduced two …


Effects Of Pore-Forming Peptides (Melittin And Magainin 2) On The Phospholipid Bilayer Interior, Elmukhtar Ehmed Alhatmi Mar 2022

Effects Of Pore-Forming Peptides (Melittin And Magainin 2) On The Phospholipid Bilayer Interior, Elmukhtar Ehmed Alhatmi

Dissertations and Theses

Antimicrobial peptides (AMPs) are one of the most promising solutions to drug-resistant bacteria. Melittin and magainin 2 are two of the most representative and extensively studied AMPs. In this research, I investigated the interaction of these two AMPs with three models of cell membranes: 80% POPC 20% POPG, 40%POPC 40% POPE and 20% POPG, and 80%POPC 20%POPG plus 30% mole fraction of cholesterol. Time-resolved fluorescence emission and fluorescence anisotropy decays of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) were analyzed to determine the effects of AMPs on the bilayer headgroup packing and changes in the interior of the phospholipid bilayer during the …


Measurement Of (Alpha, Neutron) Reactions And Development Of Analysis Tools With The Majorana Demonstrator, Tupendra Kumar Oli Jan 2022

Measurement Of (Alpha, Neutron) Reactions And Development Of Analysis Tools With The Majorana Demonstrator, Tupendra Kumar Oli

Dissertations and Theses

Neutrinoless double-beta decay (0νββ) is a hypothetical nuclear transition which, if observed, would prove that neutrinos are Majorana particles. In addition, the decay rate could provide an effective neutrino mass scale. The decay violates lepton number conservation and could offer a potential path to explain the matter-antimatter asymmetry in the universe via leptogenesis. However, the experimental observation of this decay is very challenging and would require excellent energy resolution of detectors, low background levels, and high exposure. The MAJORANA DEMONSTRATOR experiment searches for this decay in 76Ge using P-type Point Contact (PPC) High Purity Germanium (HPGe) detectors. In addition, the …


Development And Characterization Of Germanium Detectors For Searching Rare-Event Physics, Rajendra Panth Jan 2022

Development And Characterization Of Germanium Detectors For Searching Rare-Event Physics, Rajendra Panth

Dissertations and Theses

High-purity germanium (HPGe) detector has an excellent energy resolution and low-energy detection threshold ideal for searching rare-event physics such as dark matter and neutrinoless double beta decay searches. Understanding the electrical contact properties and the Ge detector properties is key to enhancing the use of Ge detectors for a wide range of applications. Amorphous Ge (a-Ge) is one of the passivation materials used to passivate Ge detectors, which also provides the barrier height to the charge injection. Several a-Ge contact Ge detectors were fabricated and tested at the University of South Dakota (USD) and Max-Planck-Institut (MPI) für Physik in Munich …


Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer Jan 2022

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …


Characterization Of Undoped Csi At Cryogenic Temperatures, Yongjin Yang Jan 2022

Characterization Of Undoped Csi At Cryogenic Temperatures, Yongjin Yang

Dissertations and Theses

Doped CSI (Cesium iodide) is wildly used in many detectors. Pure cesium iodide can only perform well at low temperature due to its luminous properties. Its luminous efficiency at low temperature is even better than that of impurity-containing cesium iodide. So we want to measure its properties at low temperatures. In chapter 3, we measure the light yield of the pure CSI, which is the important property as a detector. We also introduce our experimental equipment and methods. In chapter 4, the quenching factor represents the efficiency of energy deposition. This value is a key point for our future detection …


Cosmogenically-Induced Backgrounds In Legend, Clay Douglas Barton Jan 2022

Cosmogenically-Induced Backgrounds In Legend, Clay Douglas Barton

Dissertations and Theses

Neutrinoless double-beta decay (0νββ) is a hypothetical nuclear decay mode. 0νββ searches are a high priority in nuclear physics. Discovery would ascertain the nature of the neutrino as the first known fundamental Majorana particle, and have far-reaching implications for physics beyond the Standard Model, including a lower bound on the effective neutrino mass scale, first direct evidence of a lepton number violating process, and insight into the matter-antimatter asymmetry in the universe. The next-generation LEGEND (Large Enriched Germanium Experiment for Neutrinoless ββ Decay) project will search for neutrinoless double-beta decay of 76Ge. LEGEND builds on infrastructure and technical expertise of …


Quantum Field Theories, Topological Materials, And Topological Quantum Computing, Muhammad Ilyas Dec 2021

Quantum Field Theories, Topological Materials, And Topological Quantum Computing, Muhammad Ilyas

Dissertations and Theses

A quantum computer can perform exponentially faster than its classical counterpart. It works on the principle of superposition. But due to the decoherence effect, the superposition of a quantum state gets destroyed by the interaction with the environment. It is a real challenge to completely isolate a quantum system to make it free of decoherence. This problem can be circumvented by the use of topological quantum phases of matter. These phases have quasiparticles excitations called anyons. The anyons are charge-flux composites and show exotic fractional statistics. When the order of exchange matters, then the anyons are called non-Abelian anyons. Majorana …


The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse Sep 2021

The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse

Dissertations and Theses

With data from experiments on a jet of air emitting from an orifice flush with the floor of a wind tunnel providing a transverse flow, analysis is conducted to extract information about the state of anisotropy in the Reynolds stress tensor. Inflow velocities are modulated across two distinct turbulence intensity regimes while holding jet exit conditions constant, providing an opportunity to isolate effects of both jet to crossflow velocity ratio, r and the effects of the turbulence carried by the crossflow. Anisotropy in the Reynolds stress tensor is examined through anisotropy invariant maps and evolution of the function F, …


Efficient Neuromorphic Algorithms For Gamma-Ray Spectrum Denoising And Radionuclide Identification, Merlin Phillip Carson Sep 2021

Efficient Neuromorphic Algorithms For Gamma-Ray Spectrum Denoising And Radionuclide Identification, Merlin Phillip Carson

Dissertations and Theses

Radionuclide detection and identification are important tasks for deterring a potentially catastrophic nuclear event. Due to high levels of background radiation from both terrestrial and extraterrestrial sources, some form of noise reduction pre-processing is required for a gamma-ray spectrum prior to being analyzed by an identification algorithm so as to determine the identity of anomalous sources. This research focuses on the use of neuromorphic algorithms for the purpose of developing low power, accurate radionuclide identification devices that can filter out non-anomalous background radiation and other artifacts created by gamma-ray detector measurement equipment, along with identifying clandestine, radioactive material.

A sparse …


Investigation Of Environmental-Friendly, Membraneless Hydrogen Peroxide Fuel Cells, Bao Nguyen Aug 2021

Investigation Of Environmental-Friendly, Membraneless Hydrogen Peroxide Fuel Cells, Bao Nguyen

Dissertations and Theses

Human-induced climate change is one of the biggest threats to humanity in the 21st century. This is caused by the increase in greenhouse gas concentrations in the Earth's atmosphere. The burning of fossil fuels is the primary cause of climate change. This problem can be addressed by replacing fossil fuels with fuel sources that have clean by-products and are cost-effective. For the last few decades, hydrogen (H2) has been extensively studied as an alternative to carbon-based fossil fuels. Currently, H2 still has many shortcomings for commercial applications. The photocatalytic production of H2 still suffers from …


Proximal Policy Optimization For Radiation Source Search, Philippe Erol Proctor Aug 2021

Proximal Policy Optimization For Radiation Source Search, Philippe Erol Proctor

Dissertations and Theses

Rapid localization and search for lost nuclear sources in a given area of interest is an important task for the safety of society and the reduction of human harm. Detection, localization and identification are based upon the measured gamma radiation spectrum from a radiation detector. The nonlinear relationship of electromagnetic wave propagation paired with the probabilistic nature of gamma ray emission and background radiation from the environment leads to ambiguity in the estimation of a source's location. In the case of a single mobile detector, there are numerous challenges to overcome such as weak source activity, multiple sources, or the …


Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam Jul 2021

Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam

Dissertations and Theses

The Photoemission electron microscopes (PEEM) is a powerful tool capable of synchronously imaging wave nature of light manifested by interference patterns as well as its particle nature through the energy exchange between the incident photons and the photoemitted imaging electrons. PEEM offers a non-invasive high-resolution approach for studying light propagation and interaction phenomena within a nanophotonic waveguide [7,8]. The electric field intensity variation of the interference pattern yielded by the interaction between the incident light and the guided mode coupled into the waveguide produces varying photoemission yields creating contrast in PEEM image. The guided modes cannot be excited simply by …


Photoemission Electron Microscopy For Direct Observation Of Photonic And Plasmonic Phenomena, Theodore Stenmark May 2021

Photoemission Electron Microscopy For Direct Observation Of Photonic And Plasmonic Phenomena, Theodore Stenmark

Dissertations and Theses

Photoemission electron microscopy (PEEM) is a high-resolution microscopy technique that collects photoemitted electrons from the sample surface to form an image. PEEM offers a non-scanning imaging method with a spatial resolution in the range of 5-100nm by combining the advantages of light excitation and electron imaging. Our work looks at PEEM as an analysis tool for photonic and plasmonic phenomena. Photonic wave guiding structures exhibiting a strong dispersion relation have attracted considerable attention for applications in integrated optics, communications and sensing devices. Line defects in a photonic crystal (PC) slab offer a highly efficient way to create light with group …


Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew Mar 2021

Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew

Dissertations and Theses

Chemo-hydrodynamics generated from reaction-diffusion-convection processes of autocatalytic chemical systems are extensively studied for their applications in modeling complex systems. Compared to the more extensively studied autocatalytic systems, chlorite-tetrathionate and chlorite-trithionate, the chlorite-thiourea systems is relatively unexplored. Compared to the two previous systems, chlorite-thiourea has more straightforward chemical kinetics. To narrow the gap between chlorite-thiourea and the other systems a combination of experimental study and numerical simulation were employed to quantify this system.

Compared to established literature, experiments were performed at five orders of magnitude lower concentration of indicator, minimizing confounding effects of indicator on hydrodynamic motion. To accurately image the …


On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez Jan 2021

On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez

Dissertations and Theses

As large urban centers around the world become more densely populated, the global conversion from natural to man-made land surfaces will only increase. These land-use changes affect the urban surface energy budget which in turn changes the structure of the planetary boundary layer (PBL) above. With current high-performance computing systems, meteorological and built environment information can be better utilized to quantify the anthropogenic effects of these modifications. Although these systems have improved forecasting near-surface weather conditions, a comprehensive approach to represent urban impacts on the PBL is still limited. Improved PBL representation can lead to better weather and climate forecasts, …


Polarization Sensitive Imaging Techniques Using Quantum Entangled Qubits, Vitaly Sukharenko Jan 2021

Polarization Sensitive Imaging Techniques Using Quantum Entangled Qubits, Vitaly Sukharenko

Dissertations and Theses

The aim of this research is to study imaging techniques using quantum entangled qubits. These techniques extract information about the quantum state of two entangled qubits and corelate the degree of entanglement to each pixel. Imaging information of the underlying structure or material is decoded using the reconstruction of the quantum density matrix along with the calculated entanglement and concurrence levels between the two qubits. Reconstruction of a quantum state and quantum state tomography are of increasing importance in quantum information science. Quantum state tomography is used to describe entanglement of trapped ions [1] and photons [2]. Number of experiments …


Investigation Of Prussian Blue Analogues As Cathode Materials For Next Generation Batteries, Neal Walters Kuperman Nov 2020

Investigation Of Prussian Blue Analogues As Cathode Materials For Next Generation Batteries, Neal Walters Kuperman

Dissertations and Theses

Since the beginning of the industrial revolution, the average global temperature has risen about 1 °C due increases in anthropogenic greenhouse gases emitted into the atmosphere. Of all human produced greenhouse gases, carbon dioxide is the most prevalent, with the production of electricity from fossil fuels being the major contributor.

Solar and wind power are promising net zero emission energy sources but only accounted for ~5% of global electricity generation in 2016. The most significant hurdle hindering their widespread adoption is the intermittent nature of the electricity generation. To overcome this limitation, significant resources need to be put into the …


Investigation Of Magnetism In Transition Metal Chalcogenide Thin Films, Michael Adventure Hopkins Sep 2020

Investigation Of Magnetism In Transition Metal Chalcogenide Thin Films, Michael Adventure Hopkins

Dissertations and Theses

Layered two dimensional films have been a topic of interest in the materials science community driven by the intriguing properties demonstrated in graphene. Tunable layer dependent electrical and magnetic properties have been shown in these materials and the ability to grow in the hexagonal phase provides opportunities to grow isostructural stacked heterostructures. In this investigation, cobalt selenide (CoSe) and nickel selenide (NiSe) were grown in the hexagonal phase, which consist of central metal atoms that are natively ferromagnetic in bulk, hence providing the potential for interesting magnetic phases in thin film arrangements as well. These structures may play a role …


Measurements Of N₂O And Sf₆ Mole Fraction And N₂O Isotopic Composition Between 1978 And 1997 In Archived Air Samples From Cape Meares, Oregon, Terry Clinton Rolfe Aug 2019

Measurements Of N₂O And Sf₆ Mole Fraction And N₂O Isotopic Composition Between 1978 And 1997 In Archived Air Samples From Cape Meares, Oregon, Terry Clinton Rolfe

Dissertations and Theses

Nitrous oxide (N2O) is the third most important greenhouse gas (GHG) behind carbon dioxide (CO2) and methane (CH4). Sulfur hexafluoride (SF6) does not add significantly to climate forcing by itself due to the low concentration in the atmosphere; however, it is one of the most powerful GHG known. Measurements of atmospheric N2O made prior to mid-1990 have larger uncertainties than later periods due to advancements made in gas chromatography (GC) methods. Few atmospheric SF6 measurements pre-1990 exist, especially in the northern hemisphere. Archived samples may be analyzed using updated …


Sensors And Portable Instruments For Postharvest Agriculture, Ryan M. Lerud Jun 2019

Sensors And Portable Instruments For Postharvest Agriculture, Ryan M. Lerud

Dissertations and Theses

The sensing needs for the fresh produce industry can be split into two primary stages: during maturation in the field, also referred to as Precision Farming, and during storage and transport of the produce, or Postharvest Storage. This work seeks to improve the accuracy and reliability of commercially available electrochemical and spectroscopic sensors tailored to the sensing needs of the fresh produce industry. For electrochemical sensing, this study proposes the use of an inline filter to remove polar organic compounds, which can interfere with the readings of a platinum-based electrochemical sensor. A 50% improvement in measurement accuracy was achieved when …