Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Defects At Oxygen Plasma Cleaned Zno Polar Surfaces, Y. F. Dong, Z-Q. Fang, David C. Look, Daniel R. Doutt, G. Cantwell, J. Zhang, J. J. Song, L. J. Brillson Nov 2010

Defects At Oxygen Plasma Cleaned Zno Polar Surfaces, Y. F. Dong, Z-Q. Fang, David C. Look, Daniel R. Doutt, G. Cantwell, J. Zhang, J. J. Song, L. J. Brillson

Physics Faculty Publications

Depth-resolved cathodoluminescence spectroscopy (DRCLS) reveals the evolution of surface and near surface defects at polar surfaces with remote oxygen plasma (ROP) treatment. Furthermore, this evolution exhibits significant differences that depend on surface polarity. ROP decreased the predominant 2.5 eV defect emission related to oxygen vacancies on the O face, while creating a new 2.1 eV defect emission on the Zn face that increases with ROP time. The surface-located 2.1 eV emission correlates with carrier profiles from capacitance-voltage measurements and a shift of the E3 trap to higher binding energy from deep level transient spectroscopy (DLTS). This result suggests that ROP …


Deep Traps In Algan/Gan Heterostructures Studied By Deep Level Transient Spectroscopy: Effect Of Carbon Concentration In Gan Buffer Layers, Z-Q. Fang, B. Claflin, David C. Look, D. S. Green, R. Vetury Sep 2010

Deep Traps In Algan/Gan Heterostructures Studied By Deep Level Transient Spectroscopy: Effect Of Carbon Concentration In Gan Buffer Layers, Z-Q. Fang, B. Claflin, David C. Look, D. S. Green, R. Vetury

Physics Faculty Publications

Electrical properties, including leakage currents, threshold voltages, and deep traps, of AlGaN/GaN heterostructure wafers with different concentrations of carbon in the GaN buffer layer, have been investigated by temperature dependent current-voltage and capacitance-voltage measurements and deep level transient spectroscopy (DLTS), using Schottky barrier diodes (SBDs). It is found that (i) SBDs fabricated on the wafers with GaN buffer layers containing a low concentration of carbon (low-[C] SBD) or a high concentration of carbon (high-[C] SBD) have similar low leakage currents even at 500 K; and (ii) the low-[C] SBD exhibits a larger (negative) threshold voltage than the high-[C] SBD. Detailed …


Highly Conductive Zno Grown By Pulsed Laser Deposition In Pure Ar, Robin C. Scott, Kevin D. Leedy, Burhan Bayraktaroglu, David C. Look, Yong-Hang Zhang Aug 2010

Highly Conductive Zno Grown By Pulsed Laser Deposition In Pure Ar, Robin C. Scott, Kevin D. Leedy, Burhan Bayraktaroglu, David C. Look, Yong-Hang Zhang

Physics Faculty Publications

Ga-doped ZnO was deposited by pulsed laser deposition at 200 °C on SiO2/Si, Al2O3, or quartz in 10 mTorr of pure Ar. The as-grown, bulk resistivity at 300 K is 1.8×10−4 Ω cm, three-times lower than that of films deposited at 200 °C in 10 mTorr of O2 followed by an anneal at 400 °C in forming gas. Furthermore, depth uniformity of the electrical properties is much improved. Mobility analysis shows that this excellent resistivity is mostly due to an increase in donor concentration, rather than a decrease in acceptor concentration. Optical …


Magnetotransport Properties Of High Quality Co:Zno And Mn:Zno Single Crystal Pulsed Laser Deposition Films: Pitfalls Associated With Magnetotransport On High Resistivity Materials, John S. Mccloy, Joseph V. Ryan, Timothy C. Droubay, Tiffany C. Kasper, Scott A. Chambers, David C. Look Jun 2010

Magnetotransport Properties Of High Quality Co:Zno And Mn:Zno Single Crystal Pulsed Laser Deposition Films: Pitfalls Associated With Magnetotransport On High Resistivity Materials, John S. Mccloy, Joseph V. Ryan, Timothy C. Droubay, Tiffany C. Kasper, Scott A. Chambers, David C. Look

Physics Faculty Publications

The electrical resistivity values for a series of pure and doped (Co, Mn, Al) ZnO epitaxial films grown by pulsed laser deposition were measured with equipment designed for determining the direct current resistivity of high resistance samples. Room-temperature resistances ranging from 7 x 10(1) to 4 x 10(8) Omega/sq were measured on vacuum-reduced cobalt-doped ZnO, (Al,Co) co-doped ZnO, pure cobalt-doped ZnO, Mn-doped ZnO, and undoped ZnO. Using a four-point collinear geometry with gold spring-loaded contacts, resistivities were measured from 295 to 5 K for resistances of < approximately 10(12) Omega/sq. In addition, magnetoresistance and Hall effect were measured as a function of temperature for select samples. Throughout the investigation, samples were also measured on commercially available instrumentation with good agreement. The challenges of transport measurements on high resistivity samples are discussed, along with some offered solutions to those challenges.


Mobility Analysis Of Highly Conducting Thin Films: Application To Zno, David C. Look, K. D. Leedy, D. H. Tomich, B. Bayraktaroglu Feb 2010

Mobility Analysis Of Highly Conducting Thin Films: Application To Zno, David C. Look, K. D. Leedy, D. H. Tomich, B. Bayraktaroglu

Physics Faculty Publications

Hall-effect measurements have been performed on a series of highly conductive thin films of Ga-doped ZnO grown by pulsed laser deposition and annealed in a forming-gas atmosphere (5% H2 in Ar). The mobility as a function of thickness d is analyzed by a simple formula involving only ionized-impurity and boundary scattering and having a single fitting parameter, the acceptor/donor concentration ratio K = NA/ND. For samples with d = 3–100 nm, Kavg = 0.41, giving ND = 4.7×1020 and NA = 1.9×1020 cm−3. Thicker samples require a …


Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam Feb 2010

Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam

Physics Faculty Publications

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673–1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation …


Determining Metastable Densities In An Argon Discharge Through Optical Emission Spectroscopy, Jared A. Miles Jan 2010

Determining Metastable Densities In An Argon Discharge Through Optical Emission Spectroscopy, Jared A. Miles

Browse all Theses and Dissertations

A plasma diagnostic technique has been experimentally demonstrated where optical emission measurements of relative intensities of spectral lines in the violet range were combined with available electron-impact cross sections to yield absolute Ar metastable species concentration. An enabling factor of this analysis was that the electron excitation pattern was quite different between the Ar ground state and the metastable state. The result of this pattern was that the optical spectrum was unique depending on whether the emission was generated by direct excitation from the ground state, or by stepwise excitation from one of the metastable states. This study has shown …


Experimental Comparison Of Acr And Icamrl Magnetic Resonance Imaging Accreditation Protocols, Brock Andrew Prater Jan 2010

Experimental Comparison Of Acr And Icamrl Magnetic Resonance Imaging Accreditation Protocols, Brock Andrew Prater

Browse all Theses and Dissertations

Two primary accrediting bodies exist for magnetic resonance imaging systems: the American College of Radiology (ACR) and the Intersocietal Commission for the Accreditation of Magnetic Resonance Laboratories (ICAMRL), each of which defines specific standards for specific image quality criteria at which MRI images must be produced. An MRI clinic that wishes to show a commitment to image quality may do so by becoming accredited by one of these organizations of their choosing. The limits of these image criteria were compared to demonstrate the standards of each accrediting body. Images were produced that fell well within the standards of both accrediting …


Ostwald Ripening Of Iron (Fe) Catalyst Nanoparticles On Aluminum Oxide Surfaces (Al2O3) For The Growth Of Carbon Nanotubes, Roberto I. Acosta Jan 2010

Ostwald Ripening Of Iron (Fe) Catalyst Nanoparticles On Aluminum Oxide Surfaces (Al2O3) For The Growth Of Carbon Nanotubes, Roberto I. Acosta

Browse all Theses and Dissertations

Theoretical models have proposed that the nucleation and growth mechanism of carbon nanotubes (CNTs) has been affected by the catalytic activity of transition metals. The catalyst behavior during growth has been mainly associated as the responsible mechanism for the termination of CNT growth. Although several hypotheses have been developed to explain this mechanism, is still today an unresolved phenomenon. It was recently shown that the Ostwald ripening of iron (Fe) nanoparticles played a dominant role in the termination of CNT growth. The Ostwald ripening mechanism was further investigated as a function of thermal annealing in Hydrogen (H2) for …


Atmospheric Effects On The Propagation Of Mmw And Sub-Mmw Radiation, John S. Cetnar Jan 2010

Atmospheric Effects On The Propagation Of Mmw And Sub-Mmw Radiation, John S. Cetnar

Browse all Theses and Dissertations

This thesis is a study of the propagation of millimeter wavelength (MMW) and submillimeter wavelength (sub-MMW) electromagnetic radiation (a.k.a. THz radiation) through the Earth's atmosphere. THz radiation is electromagnetic radiation that exists between the microwave and far infrared regions of the electromagnetic spectrum. It is nonionizing radiation but can penetrate through materials that are opaque to visible light so therefore has many new and useful applications. Unfortunately, THz radiation is heavily attenuated by the Earth's atmosphere as it propagates through it. This therefore represents a challenge to communications and sensing applications at millimeter and sub-millimeter wavelengths. In this work, the …


Proximity And Thickness Estimation Of Aluminum 3003 Alloy Metal Sheets Using Multi-Frequency Eddy Current Sensor, Sunil S. Kamanalu Jan 2010

Proximity And Thickness Estimation Of Aluminum 3003 Alloy Metal Sheets Using Multi-Frequency Eddy Current Sensor, Sunil S. Kamanalu

Browse all Theses and Dissertations

The research work is focused on conducting a feasibility study on a new "non-contact" single probe dual coil inductive sensor for sensing the proximity and thickness of Aluminum (Al) 3003 alloy metal sheets, which is a non-magnetic metal. A bulk of the research and development work has already been done in the area of non-destructive testing (NDT) using eddy current technology targeted to various applications like corrosion detection, material thickness, material conductivity, etc. The research work presented in this thesis uses the prior research and development work completed in NDT as a platform for conducting this study to estimate proximity …


Respiratory-Gated Imrt Quality Assurance With Motion In Two Dimensions, Michael Todd Massie Jan 2010

Respiratory-Gated Imrt Quality Assurance With Motion In Two Dimensions, Michael Todd Massie

Browse all Theses and Dissertations

Intensity modulated radiation therapy (IMRT) plans can be further customized to each patient with the use of a four-dimensional (4D) respiratorygated computed tomography (CT), with time being the fourth dimension. The 4D respiratory-gated CT allows for the internal margin (IM), the expansion of the tumor volume that accounts for physiologic motions, to be addressed in the treatment planning process and no longer assumes that the treatments will be delivered to a fixed or rigid patient anatomy. Delivering the IMRT plan with a gated technique limits the treatment to a duty cycle when the target motion is at a minimum.

The …


The Derivation And Testing Of Three-Dimensional Line Equations That Predict The Location Of Brachytherapy Sources, Rhett Ellis Lindsey Jan 2010

The Derivation And Testing Of Three-Dimensional Line Equations That Predict The Location Of Brachytherapy Sources, Rhett Ellis Lindsey

Browse all Theses and Dissertations

In High Dose Rate brachytherapy, a catheter is placed inside the body and a radioactive source is allowed to dwell at specific positions to treat a tumor. In normal usage, anatomical images acquired before the treatment are used to plan dwell positions, and then the plan is executed without further verifying source locations during treatment. However, slight errors in catheter positioning and shifts in internal anatomy cause variations in source position. In this study, a general method for determining dwell positions during treatment is evaluated. For this method, the treatment source exposes the tumor to radiation and creates an image …


Dosimetric Effects Near Implanted Vascular Access Ports Under External Electron Beam Radiation, David Coll Segarra Jan 2010

Dosimetric Effects Near Implanted Vascular Access Ports Under External Electron Beam Radiation, David Coll Segarra

Browse all Theses and Dissertations

Previous studies on dosimetry show important effects for metal vascular access ports for x-rays and electron beams and moderate to no effects for plastic ports for x-ray beams when ports are in the path of the beam. No previous studies exist regarding the effects of electron beams on vascular access ports other than for those made of metal although it has been suggested that electron beam attenuation through non-metal ports may be possible.

Measurements of relative ionization through the device and adjacent to the device anteriorly and laterally were taken. A clinical particle accelerator delivered typical clinical electron beams of …


Temperature And Frequency Dependent Conduction Mechanisms Within Bulk Carbon Nanotube Materials, John Simmons Bulmer Jan 2010

Temperature And Frequency Dependent Conduction Mechanisms Within Bulk Carbon Nanotube Materials, John Simmons Bulmer

Browse all Theses and Dissertations

The resistance of three types of bulk carbon nanotube (CNT) materials (floating catalyst CNT yarn, forest grown CNT yarn, and super acid spun CNT fiber) was measured from room temperature to 900 C. Fitting the curves to established conduction equations for disordered materials, competing conduction mechanisms pertaining to the material could be determined. Floating catalyst CNT yarn displayed both semiconductive and metallic isotropic behavior with a resistance minimum, similar to the behavior of crystalline graphite. It was found that, at room temperature, the semiconducting contribution-most likely junctions between CNTs-accounted for 99.99% of the overall resistance. The resistance of forest grown …