Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Synthesis And Characterization Of Graphene-Family Mesoporous Nanomaterials For Themal Energy Harvesting And Sensing Applications, Romney Meek Oct 2018

Synthesis And Characterization Of Graphene-Family Mesoporous Nanomaterials For Themal Energy Harvesting And Sensing Applications, Romney Meek

Masters Theses & Specialist Projects

Graphene-family nanomaterials (GFNs) have attracted a great deal of attention both in academia and in industry for a range of applications relevant for homeland security. In this thesis, an array of graphene-based hybrid materials and aerogels are synthesized for use as novel thermo-electrochemical energy harvesters and for ascorbic acid biosensing devices. The graphene-family nanomaterials include graphene oxide-GO, thermally reduced GO-rGOth, nitrogenated functionalized graphene-NFG, graphene aerogel-GA, nitrogen-doped graphene aerogel-NGA, multi-walled carbon nanotube aerogel-MWCNT, single-walled carbon nanotube aerogel-SWCNT, graphene and nanotube combined ‘hybrid’ aerogels-Gr:(SW/MW)CNT of various ratios, along with multilayered nanostructured architectures such as gold (AuNP) and silver nanoparticles (AgNP) decorated NFG …


Characterization Of Eight Potentially Hazardous Near Earth Asteroids: Rotation Period Analysis And Structure Modeling Via Light Curve Inversion Techniques, Stacy Jo Hicks Jul 2018

Characterization Of Eight Potentially Hazardous Near Earth Asteroids: Rotation Period Analysis And Structure Modeling Via Light Curve Inversion Techniques, Stacy Jo Hicks

Masters Theses & Specialist Projects

The term “homeland security”, seems to have become synonymous with terrorism in the minds of the general public. However, there are other threats to the security of the United States homeland that can be just as, if not more, devastating than terrorism. Included among these other threats is the potential of an asteroid collision with Earth. Historically, asteroid impact events have been responsible for the devastation of our planet and many of the mass extinction events encountered throughout the geologic record. Knowledge of physical parameters such as structure and rotational dynamics of the asteroid are critical parameters in developing interception …


Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs Jul 2018

Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs

Masters Theses & Specialist Projects

Gold monolayer-protected nanoclusters (MPCs) with average diameters of 1-5 nm protected by alkane- and arenethiolates were synthesized. Mixed-monolayer protected nanoparticles (MMPCs) were prepared by functionalizing hexanethiolate-protected MPCs with either 11-mercaptoundecanoic acid (MUA-MMPC), 11-mercaptoundecanol (MUO-MMPC), or 4-aminothiophenol (ATP-MMPC) using ligand place exchange. Presentation of various chemical reagents such as nucleophile, acid, or base and change in physical environment through ultrasonic and thermal irradiation resulted in changes to particles and their physical properties. Thermogravimetric analysis (TGA) was used to measure maximum temperature of the derivated thermogravimetric peaks (Tmax,DTG) as a means of comparing temperature dependence of mass loss. The absorption spectrum within …


Laser-Induced Recoverable Surface Patterning On Ni50ti50 Shape Memory Alloys, Saidjafarzoda Ilhom Jul 2018

Laser-Induced Recoverable Surface Patterning On Ni50ti50 Shape Memory Alloys, Saidjafarzoda Ilhom

Masters Theses & Specialist Projects

Shape memory alloys (SMAs) are a unique class of smart materials exhibiting extraordinary properties with a wide range of applications in engineering, biomedical, and aerospace technologies. In this study, an advanced, efficient, low-cost, and highly scalable laser-assisted imprinting method with low environmental impact to create thermally controllable surface patterns is reported. Two different imprinting methods were carried out mainly on Ni50Ti50 (at. %) SMAs by using a nanosecond pulsed Nd:YAG laser operating at 1064 nm wavelength and 10 Hz frequency. First, laser pulses at selected fluences were directly focused on the NiTi surface, which generated pressure pulses of up to …


An Integration Setup If The In-Situ Mass And Spectroscopic Analysis For Volatile Liquids Or Solids, Kolton K. Jones Apr 2018

An Integration Setup If The In-Situ Mass And Spectroscopic Analysis For Volatile Liquids Or Solids, Kolton K. Jones

Masters Theses & Specialist Projects

To help address the growing need for more and better sensors, an attempt was made to produce an in-situ mass and spectroscopic analysis of liquid and solid samples, to characterize samples and sensors. Spectroscopic analysis consisted of Raman and FTIR where mass measurements were carried out. The sample or sensor’s holder would allow for spectroscopic analysis as well as expose the sample to high temperatures and various chemicals. While Raman and FTIR were successful in producing reliable and consistent data, the constructed watt balance was not. This failure was a result of eliminate vibrational noise.