Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner Aug 2017

Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner

Mathematics Faculty Publications

Morphological instability of a planar surface ([111], [011], or [001]) of an ultra-thin metal film is studied in a parameter space formed by three major effects (the quantum size effect, the surface energy anisotropy and the surface stress) that influence a film dewetting. The analysis is based on the extended Mullins equation, where the effects are cast as functions of the film thickness. The formulation of the quantum size effect (Z. Zhang et al., PRL 80, 5381 (1998)) includes the oscillation of the surface energy with thickness caused by electrons confinement. By systematically comparing the effects, their contributions into the …


Graphene-Based ‘Hybrids’ As High-Performance Electrodes With Tailored Interfaces For Alternative Energy Applications: Synthesis, Structure And Electrochemical Properties, Mayme Marie Van Meveren Jul 2017

Graphene-Based ‘Hybrids’ As High-Performance Electrodes With Tailored Interfaces For Alternative Energy Applications: Synthesis, Structure And Electrochemical Properties, Mayme Marie Van Meveren

Masters Theses & Specialist Projects

Technological progress is determined to a great extent by developments of novel materials from new combinations of known substances with different dimensionality and functionality. We investigate the development of 3D ‘hybrid’ nanomaterials by utilizing graphene based systems coupled with transition metal oxides (e.g. manganese oxides MnO2 and Mn3O4). This lays the groundwork for high performance electrochemical electrodes for alternative energy owing to their higher specific capacitance, wide operational window and stability through charge-discharge cycling, environmental benignity, cost effective, easily processed, and reproducible in a larger scale.

Thus far, very few people have investigated the potential of combining carbon sheets that …


One-Step Laser-Induced Hydrogen Generation From Coal Powders In Water, Dovletgeldi Seyitliyev Jul 2017

One-Step Laser-Induced Hydrogen Generation From Coal Powders In Water, Dovletgeldi Seyitliyev

Masters Theses & Specialist Projects

This study presents a simple way of obtaining hydrogen gas (H2) from various ranks of coal, coke, and graphite using nanosecond laser pulses. Powder samples of coal and graphite with and without water were irradiated with 1064 nm and 532 nm pulses from an Nd: YAG laser for 45 minutes under air and argon atmospheres. It was observed that 532 nm laser pulses were more effective than 1064 nm pulses in gas generation and both were nonlinearly correlated with respect to the laser energy density. Mainly hydrogen (H2) and carbon monoxide (CO) were observed. The H2 to CO ratio shows …


Numerically Solving A System Of Pdes Modeling Chronic Wounds Treated With Oxygen Therapy, Stefan Stryker Jun 2017

Numerically Solving A System Of Pdes Modeling Chronic Wounds Treated With Oxygen Therapy, Stefan Stryker

Mahurin Honors College Capstone Experience/Thesis Projects

Chronic wounds such as diabetic foot ulcers are the leading cause of non-traumatic amputations in developed countries. For researchers to better understand the physiology of these wounds, a mathematical model describing oxygen levels at the wound site can be used to help predict healing responses. The model utilizes equations that are modified from work by Guffey (2015) that consists of four variables – oxygen, bacteria, neutrophils, and chemoattractant within a system of partial differential equations. Our research focuses on numerically solving these partial differential equations using a finite volume approach. This numerical solver will be important for future research in …


Synthesis, Characterization, And Properties Of Graphene-Based Hybrids With Cobalt Oxides For Electrochemical Energy Storage And Electrocatalytic Glucose Sensing, Sara C. Botero Carrizosa Apr 2017

Synthesis, Characterization, And Properties Of Graphene-Based Hybrids With Cobalt Oxides For Electrochemical Energy Storage And Electrocatalytic Glucose Sensing, Sara C. Botero Carrizosa

Masters Theses & Specialist Projects

A library of graphene-based hybrid materials was synthesized as novel hybrid electrochemical electrodes for electrochemical energy conversion and storage devices and electrocatalytical sensing namely enzymeless glucose sensing. The materials used were supercapacitive graphene-family nanomaterials (multilayer graphene-MLG; graphene oxide-GO, chemically reduced GO-rGO and electrochemical reduced GOErGO) and pseudocapacitive nanostructured transition metal oxides including cobalt oxide polymorphs (CoO and Co3O4) and cobalt nanoparticles (CoNP). These were combined through physisorption, electrodeposition, and hydrothermal syntheses approaches. This project was carried out to enhance electrochemical performance and to develop electrocatalytic platforms by tailoring structural properties and desired interfaces. Particularly, electrodeposition and hydrothermal synthesis facilitate chemically-bridged …