Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Principal Component Analysis-Based Anatomical Motion Models For Use In Adaptive Radiation Therapy Of Head And Neck Cancer Patients, Mikhail Aleksandrovich Chetvertkov Jan 2016

Principal Component Analysis-Based Anatomical Motion Models For Use In Adaptive Radiation Therapy Of Head And Neck Cancer Patients, Mikhail Aleksandrovich Chetvertkov

Wayne State University Dissertations

Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment.

Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients’ actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic …


Dielectric Anomalies Of Both Chiral And Achiral Nematogens Near The Isotropic To Mesogenic Phase Transition, Garrett Justin Godfrey Jan 2016

Dielectric Anomalies Of Both Chiral And Achiral Nematogens Near The Isotropic To Mesogenic Phase Transition, Garrett Justin Godfrey

Wayne State University Dissertations

The dielectric properties of nematic liquid crystals were studied in both the achiral and chiral limits. For achiral nematics, the literature documents that pretransitional curvature occurs for polar molecules on both sides of the nematic and isotropic phase transition. This curvature is due to anti-parallel dimer formation. However, past models have failed to quantitatively describe pretransitional curvature. Through a generalization of the order parameter, a macroscopic model has been developed to mathematically describe the pretransitional curvature on the isotropic side of the transition. The new model was fitted to dielectric data from the literature. Meaningful parameter estimates were extracted.

The …


How Geometric Distortions Scatter Electronic Excitations In Conjugated Macromolecules: Towards Photoinduced Relaxation And Energy Transfer, Tian Shi Jan 2016

How Geometric Distortions Scatter Electronic Excitations In Conjugated Macromolecules: Towards Photoinduced Relaxation And Energy Transfer, Tian Shi

Wayne State University Dissertations

The exciton scattering (ES) approach has been developed to study electronic excitations in large branched conjugated molecules. It attributes excited states to standing waves in the quasi-one-dimensional system by assuming a quasi-particle picture of optical excitations. Tight binding models extend capability of the ES approach to investigate the exciton-phonon coupling.

The topological counting method plays a substantial role in constructing tight binding models. It depicts the ES equations as a topological intersection problem. Then, by applying the index theorem, we can get the total number of excited states, which is equal to the number of repeat units plus topological charges …


Electronic Transport In Two-Dimensional Systems In The Quantum Hall Regime, Vinicio Tarquini Jan 2016

Electronic Transport In Two-Dimensional Systems In The Quantum Hall Regime, Vinicio Tarquini

Wayne State University Dissertations

The integer and the fractional quantum Hall effects are essential to the exploration of quantum matters characterized by topological phases. A quantum Hall system hosts one-dimensional (1D) chiral edge channels that manifest zero magnetoresistance, dissipationless due to the broken time reversal symmetry, and quantized Hall resistance v h e^2 with v being the topological invariant (or Chern number). The 1-1 correspondence between the conducting gapless edge channels to the gapped incompressible bulk states is a defining character of a topological insulator (TI). Understanding this correspondence in real systems, especially the origin of its robustness (in terms of the limit of …


Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain Jan 2016

Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain

Wayne State University Dissertations

The ultra-thin body of monolayer (and few-layer) two dimensional (2D) semiconducting materials such as transitional metal dichalconiges (TMDs), black phosphorous (BP) has demonstrated tremendous beneficial physical, transport, and optical properties for a wide range of applications. Because of their ultrathin bodies, the properties of 2D materials are highly sensitive to environmental effects. Particularly, the performance of 2D semiconductor electronic devices is strongly dependent on the substrate/dielectric properties, extrinsic impurities and absorbates. In this work, we systematically studied the transport properties of mechanically exfoliated few layer TMD field-effect transistors (FETs) consistently fabricated on various substrates including SiO2,Parylene –C, Al2O3, SiO2 modified …


An Automated System To Measure The Quantum Efficiency Of Ccds For Astronomy, Rebecca Ann Coles Jan 2016

An Automated System To Measure The Quantum Efficiency Of Ccds For Astronomy, Rebecca Ann Coles

Wayne State University Dissertations

We describe a system to measure the Quantum Efficiency in the wavelength range of 300nm to 1100nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instruments to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. This system will be part of a production facility at Brookhaven National Lab for the basic component of the LSST camera.


Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick Jan 2016

Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick

Wayne State University Dissertations

In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable …


Multiferroicity In Iron Vanadate, Magnetite And Polyvinylidene Fluoride Nanocomposite Films, Ehab Hamdy Abdelmonaim Abdelhamid Jan 2016

Multiferroicity In Iron Vanadate, Magnetite And Polyvinylidene Fluoride Nanocomposite Films, Ehab Hamdy Abdelmonaim Abdelhamid

Wayne State University Dissertations

With the increasing demand on cheaper and better performance multifunctional materials for different applications, it is becoming more crucial to have a better understanding of the physics needed to tailor more devices and materials to fit better in every day’s technological needs. Materials which show more than one ferroic order simultaneously –namely, multiferroics– are of particular importance for their potential applications as multiple state memory elements, transducers and electrically tunable microwave devices.

In this work, we studied FeVO4 single crystals as an example on low symmetry multiferroics. We focused on the anisotropy in those crystals in an attempt to nail …


Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang Jan 2016

Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang

Wayne State University Dissertations

ABSTRACT

TWO-DIMENSIONAL LOW-RESISTANCE CONTACTS FOR HIGH PERFORMANCE WSe2 and MoS2, TRANSISTORS

by

Hsun-jen Chuang

May 2016

Advisor: Dr. Zhixian Zhou

Major: Physics

Degree: Doctor of Philosophy

Two-dimensional layered materials beyond graphene such as transition metal dichalcogenides (TMDs) have attracted a lot of interests due to their superior property in many aspects. In this work, I am focusing on two TMD materials: WSe2 and MoS2. The main objective this work is to develop novel approaches to fabricating low-resistance ohmic contacts to TMDs for low power, high performance electronic applications. First, we used graphene as electrical contacts for WSe2 field-effect transistor with …


Fe3o4 Nanoparticles For Magnetic Hyperthermia And Drug Delivery: Synthesis, Characterization And Cellular Studies, Maheshika Palihawadana Arachchige Jan 2016

Fe3o4 Nanoparticles For Magnetic Hyperthermia And Drug Delivery: Synthesis, Characterization And Cellular Studies, Maheshika Palihawadana Arachchige

Wayne State University Dissertations

In recent years, magnetic nanoparticles (MNPs), especially superparamagnetic Fe3O4nanoparticles, have attracted a great deal of attention because of their potential applications in biomedicine. Among the other applications, Magnetic hyperthermia (MHT), where localized heating is generated by means of relaxation processes in MNPs when subjected to a radio frequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. Specific absorption rate (SAR), which measures the efficiency of heat generation, depends on magnetic properties of the particles such as saturation magnetization (Ms), magnetic anisotropy (K), particle size distribution, magnetic dipolar interactions, and the rheological properties of the target medium.We …


Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan Jan 2016

Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan

Wayne State University Dissertations

For the fabrication, focused ion beam parameters are investigated to successfully fabricate dense periodical patterns, such as gratings, on hard transition metal nitride such as zirconium nitride. Transition metal nitrides such as titanium nitride and zirconium nitride have recently been studied as alternative materials for plasmonic devices because of its plasmonic resonance in the visible and near-infrared ranges, material strength, CMOS compatibility and optical properties resembling gold. Coupling of light on the surface of these materials using sub-micrometer gratings gives additional capabilities for wider applications. Here we report the fabrication of gratings on the surface of zirconium nitride using gallium …


Optimization Of Transition-Metal Dichalcogenides Based Field- Effect- Transistors Via Contact Engineering, Meeghage Madusanka Perera Jan 2016

Optimization Of Transition-Metal Dichalcogenides Based Field- Effect- Transistors Via Contact Engineering, Meeghage Madusanka Perera

Wayne State University Dissertations

ABSTRACT

Optimization of Transition-Metal Dichalcogenides based Field- Effect-Transistors via contact engineering

by

Meeghage M Perera

September , 2016

Advisor : Dr. Zhixian Zhou

Major: Physics (Condensed mater physics/nano-electronics)

Degree: Doctor of Philosophy

Layered transition Metal Dichalcogenides (TMDs) have demonstrated a wide range of remarkable properties for applications in next generation nano-electronics. These systems have displayed many “graphene-like” properties including a relatively high carrier mobility, mechanical flexibility, chemical and thermal stability, and moreover offer the significant advantage of a substantial band gap. However, the fabrication of high performance field-effect transistors (FETs) of TMDs is challenging mainly due to the formation of …