Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Utah State University

Selected Works

Stratosphere

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Effect Of Sudden Stratospheric Warmingon Lunar Tidal Modulation Of The Equatorial Electrojet, J. Park, H. Luhr, M. Kunze, Bela G. Fejer, K. W. Min Mar 2012

Effect Of Sudden Stratospheric Warmingon Lunar Tidal Modulation Of The Equatorial Electrojet, J. Park, H. Luhr, M. Kunze, Bela G. Fejer, K. W. Min

Bela G. Fejer

[1] Using the equatorial electrojet (EEJ) peak current intensity as deduced from CHAMP magnetic observations from the years 2001 through 2009, we investigated the relationship between sudden stratospheric warming (SSW) and lunitidal signatures in the tropical ionosphere. There is a practically one-to-one correspondence between midwinter SSW periods and the strongest 13 day modulation of the EEJ strength as observed by CHAMP. That is, all the midwinter SSW periods from December 2001 to August 2009 were accompanied by an enhanced 13 day modulation of the EEJ strength. No other geophysical phenomenon brought about as strong a 13 day modulation as those …


Enhanced Lunar Semidiurnal Equatorial Vertical Plasma Drifts During Sudden Stratospheric Warmings, Bela G. Fejer, B. D. Tracy, J. L. Chau Nov 2011

Enhanced Lunar Semidiurnal Equatorial Vertical Plasma Drifts During Sudden Stratospheric Warmings, Bela G. Fejer, B. D. Tracy, J. L. Chau

Bela G. Fejer

[1] Large scale electrodynamic and plasma density variations in the low latitude ionosphere have recently been associated with sudden stratospheric warming (SSW) events. We present average patterns of largely enhanced lunar semidiurnal equatorial vertical plasma drift perturbations during arctic winter low and high solar flux SSW events. These perturbations play a dominant role in the electrodynamic response of the low latitude ionosphere to SSWs. Our models indicate that the amplitudes of the enhanced lunar semidiurnal drifts are strongly local time and solar flux dependent, with largest values during early morning low solar flux SSW periods. These results suggest that ionospheric …


Lunar Dependent Equatorial Ionospheric Effects During Sudden Stratosphericwarmings, Bela G. Fejer, M. E. Olson, J. L. Chau, C. Stolle, H. Luhr, L. P. Goncharenko, K. Yumoto, T. Nagatsuma Jan 2010

Lunar Dependent Equatorial Ionospheric Effects During Sudden Stratosphericwarmings, Bela G. Fejer, M. E. Olson, J. L. Chau, C. Stolle, H. Luhr, L. P. Goncharenko, K. Yumoto, T. Nagatsuma

Bela G. Fejer

[1] We have used plasma drift and magnetic field measurements during the 2001–2009 December solstices to study, for the first time, the longitudinal dependence of equatorial ionospheric electrodynamic perturbations during sudden stratospheric warmings. Jicamarca radar measurements during these events show large dayside downward drift (westward electric field) perturbations followed by large morning upward and afternoon downward drifts that systematically shift to later local times. Ground-based magnetometer measurements in the American, Indian, and Pacific equatorial regions show strongly enhanced electrojet currents in the morning sector and large reversed currents (i.e., counterelectrojets) in the afternoon sector with onsets near new and full …


Quiet Variability Of Equatorial E × B Drifts During A Sudden Stratospheric Warning Event, J. L. Chau, Bela G. Fejer, L. P. Goncharenko Mar 2009

Quiet Variability Of Equatorial E × B Drifts During A Sudden Stratospheric Warning Event, J. L. Chau, Bela G. Fejer, L. P. Goncharenko

Bela G. Fejer

[1] We present strong evidence that during the January 2008 minor sudden stratospheric warming (SSW) event, the equatorial vertical E × B drifts exhibit a unique and distinctive daytime pattern. We do not think one event causes the other, however both events might be related through the global effects of planetary waves. The drifts were measured by the Jicamarca Incoherent scatter radar located under the magnetic equator. We have observed an anomalous temporal variation of the vertical E × B drifts during the minor SSW event, showing a semidiurnal variation with very large amplitudes lasting for several days. Large differences …