Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Evaluation Of Low-Temperature Fluoride Routes To Synthesize Actinide Nitrides And Oxide Solid Solutions, Gunanda Waduge Chinthaka Silva May 2009

Evaluation Of Low-Temperature Fluoride Routes To Synthesize Actinide Nitrides And Oxide Solid Solutions, Gunanda Waduge Chinthaka Silva

UNLV Theses, Dissertations, Professional Papers, and Capstones

Actinide mononitrides have been considered as a possible nuclear fuel for the Generation-IV nuclear reactor systems. In the process of evaluating these actinide mononitrides as nuclear fuel, it is important to study different chemical and physical characteristics of these compounds. Synthesis of the materials is thus important. Carbothermic reduction is one of the techniques that have been used to synthesize actinide mononitrides. In this method, a mixture of actinide oxide such as UO 2 and excess carbon is heat treated at temperatures greater than 1700 °C under a nitrogen atmosphere. The technique is however not promising in synthesizing the actinide …


Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Tyler A. Sullens Jan 2008

Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Tyler A. Sullens

Fuels Campaign (TRP)

One of the original synthetic routes devised for the synthesis of U (III)N involved the entire reaction taking place in liquid ammonia. Several experimental reactions were conducted in an attempt to synthesize the UI3(NH3)x and U(NH2)3(NH3)x precursors of U(III) N. Each attempt involved cleaning of the uranium metal to remove the oxide coating of the metal reagent with 3 washes of concentrated nitric acid, each followed by a rinse with liquid ammonia. Success of this cleaning procedure was varied, with a majority of cleaned metal oxidizing rapidly once …


Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann Jan 2006

Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann

Fuels Campaign (TRP)

A wide variety of fuel concepts are considered for advanced reactor technology including metals, metal oxides or metal nitrides as solid solutions or composite materials. Nitride fuels have appropriate properties for advanced fuels including high thermal conductivity, thermal stability, solid-state solubility of actinides, fissile metal density, and suitable neutronic properties. A drawback of nitride fuels involves their synthesis. A key parameter for preparing oxide fuels is the precipitation step in the sol-gel process. For nitride fuels, the current synthetic route is carbothermic reduction from the oxide to the nitride. This process step is based on solid phase reactions and for …


The Electrochemical Separation Of Curium And Americium: Quaterly Report August-December 2004, David W. Hatchett, Kenneth Czerwinski Dec 2004

The Electrochemical Separation Of Curium And Americium: Quaterly Report August-December 2004, David W. Hatchett, Kenneth Czerwinski

Separations Campaign (TRP)

This research report outlines the current status and progress associated with the electrochemical separation of Curium and Americium. The following pages outline the progress on our project to date. We have been actively performing research on this project for three months and are currently on schedule in terms of the proposed timelines.

The initial focus of the project involved setting up the laboratories for the studies outlined in the grant proposal. The instrumentation needed included an electrochemical work station that will perform the bulk of the electrochemical studies. This instrument will complement the electrochemical instrumentation in Dr. Hatchett’s laboratory and …


Electrochemical Separation Of Curium And Americium, David W. Hatchett, Kenneth Czerwinski May 2004

Electrochemical Separation Of Curium And Americium, David W. Hatchett, Kenneth Czerwinski

Separations Campaign (TRP)

The objective of this project is to develop a method for the separation of Am from Cm based on electrochemical techniques. Electrochemical systems that allow the thermodynamics of actinide and lanthanide complexes to be systematically evaluated and tuned will be examined. The influence of complex formation on the ability to selectively isolate a given species electrochemically will be evaluated. Metal-ligand complex formation provides a useful derivation technique to increase solubility in solution environments that favor precipitation. In addition, the thermodynamic properties of a complex relative to the isolated species may be shifted to more suitably measurable electrochemical separation regimes. Electrochemical …


Design And Simulation Of An Induction Skull Melting System, Taide Tan May 2004

Design And Simulation Of An Induction Skull Melting System, Taide Tan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Incorporating volatile actinides, mainly americium into a metallic fuel pin (MFP) has been a serious problem due to americium’s high vapor pressure. An Induction Skull Melting (ISM) system was identified by Argonne National Laboratory (ANL) as a potential furnace design to cast MFPs. Through the development of the ISM system, the nuclear waste feedstock can be melted and injected into the mold for fabricating MFPs in the advanced nuclear fuel cycles. The main phenomena in this system include: induction melting process, casting process and mass transfer process of americium. Issues related to ISM system design for casting MFPs are discussed …


The Electrochemical Separation Of Curium And Americium: Quaterly Report January - March 2004, David W. Hatchett, Kenneth Czerwinski Mar 2004

The Electrochemical Separation Of Curium And Americium: Quaterly Report January - March 2004, David W. Hatchett, Kenneth Czerwinski

Separations Campaign (TRP)

This research report outlines the current status and progress associated with the electrochemical separation of Curium and Americium.

Data collection and analysis of the Ce3+/Ce4+ redox couple in various supporting electrolytes has continued. All electrolyte systems were investigated at Pt, Au, and Glassy Carbon working electrodes. Analysis of these data was accomplished by performing appropriate background subtractions to reveal net peaks due to Ce redox behavior. Successful identification of the Ce redox couple was achieved with all electrolyte/electrode systems, although a decline in peak resolution was observed with increasing acid concentration. Optimal conditions in this experiment were …