Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 81

Full-Text Articles in Physical Sciences and Mathematics

A Study Of Data/Monte Carlo Agreement In Charmed Baryon Decays At Belle Ii, Kaitlyn Thurmond May 2023

A Study Of Data/Monte Carlo Agreement In Charmed Baryon Decays At Belle Ii, Kaitlyn Thurmond

Honors Theses

The Belle II experiment at the SuperKEKB electron-positron accelerator facility in Tsukuba, Japan has a primary goal of searching for new physics beyond the Standard Model of particle physics. Extremely precise measurements of particle decays will be compared with Standard Model predictions in order to expose the presence of new particles and interactions. These measurements are prepared using simulated samples to avoid potential biases when studying the data. The Belle II collaboration produces two types of simulated samples for this purpose. One is produced with consistent calibration payloads and another with payloads calibrated as a function of data taking. This …


Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert May 2023

Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert

Honors Theses

The work covered in this thesis all falls under the theme of photophysical processes after light and matter interact. Those of primary interest are Raman scattering induced vibrations and excited state dynamics probed by transient absorption spectroscopy. Small molecules are studied with Raman spectroscopy and computational chemistry. These studies unearth the shifts in vibrational frequency as a function of charge transfer or receipt and how a quantitative assay of natural orbital populations and delocalization can offer both the nature and magnitude of this charge transfer. Further, a method is presented that builds upon previous work within the academic family tree; …


An Analysis Of Detection Asymmetry Using Baryon Decays In Belle Ii, Matthew Mestayer May 2023

An Analysis Of Detection Asymmetry Using Baryon Decays In Belle Ii, Matthew Mestayer

Honors Theses

The purpose of this study was to determine the detection asymmetry of the Belle II detector using decays of two common baryons, Λ0 → ��π- and Σ+ → ��π0. A Monte Carlo simulation of both decays was used to determine the validity of signal isolation criteria. These criteria were then applied to the Belle II data, allowing for a comparison of the detection asymmetry in the data relative to the simulation. The results show a moderate detection asymmetry when using the Λ0 → ��π- decay, particularly for forward-going baryons. For the Σ+ …


A Performance Analysis Of The Belle Ii Detector, John Stacy May 2022

A Performance Analysis Of The Belle Ii Detector, John Stacy

Honors Theses

The Belle II experiment has recently (2018) started data taking at the SuperKEKB electron-positron collider in Tsukuba, Japan. Detector performance studies are necessary to understand early data and prepare for more complex analyses. This study of the proton detection efficiency of the Belle II detector compares real and simulated data to find discrepancies with the intention to provide useful information for detector and calibration experts to better gauge detector performance. It also attempts to improve the characterization of proton identification efficiency at low momenta, which performs poorly under the current fitting model. This helps analysts exploring final states that include …


Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, Paul Gebeline May 2022

Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, Paul Gebeline

Honors Theses

This analysis uses simulated data from the Belle II experiment to measure the lifetime of the Xi_c^+ baryon. Three different decay modes are investigated to explore the feasibility and accuracy of such measurements at Belle II. The Xi_c^+ lifetime is measured using one of these modes after reducing backgrounds from sources other than the decay of interest. The final result is 464 +/- 15 fs, which is consistent with the expected result of 442 fs within uncertainty. This result shows that Belle II can make competitive measurements of particle properties and decays.


Monte Carlo Study Of Lepton Flavor Universality Violation In B Decays With Belle Ii Simulation, Sakul Mahat May 2022

Monte Carlo Study Of Lepton Flavor Universality Violation In B Decays With Belle Ii Simulation, Sakul Mahat

Honors Theses

Belle II, the first super B-Factory experiment, is designed to make precise measurements of weak interaction parameters and search for New Physics beyond the Standard Model of particle physics. The Standard Model of particle physics is a theory that classifies all known elementary particles and describes three of the four known fundamental forces in the universe. Physics beyond the Standard Model that addresses the theoretical developments needed to explain the deficiencies in the Standard Model is often referred to as New Physics. One of the assumptions of the Standard Model is that the couplings of particles that mediate the weak …


Finding Aid For The Evelyn Uhrhan Irving Collection (Mum00146) Jan 2022

Finding Aid For The Evelyn Uhrhan Irving Collection (Mum00146)

Archives & Special Collections: Finding Aids

Correspondence of modern language professor Evelyn Uhrhan Irving with various public officials and media outlets on foreign policy and domestic matters.


A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang May 2021

A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang

Honors Theses

For (HF)n, (H2O)n, and (HCl)n (n = 3 − 5), we have rigorously characterized the structures for the minima and transition states for synchronous proton transfer (SPT) with the CCSD(T) method and aug-cc-pVTZ basis set. The electronic barrier heights (∆E) associated with these transition states have also been computed with the explicitly correlated CCSD(T)-F12 method and the aug-cc-pVQZ-F12 basis set (abbreviated aQZ-F12). (HCl)n (n = 3 − 5) SPT transition states have not been previously identified to the best of our knowledge, and they have been found …


Characterization Of Mechanical Responses Of Helical Antenna For Satellite Communications, Scott Chumley May 2021

Characterization Of Mechanical Responses Of Helical Antenna For Satellite Communications, Scott Chumley

Honors Theses

The purpose of this work was to identify and analyze the vibrational modes of a helical structure to model the vibrational characteristics of an L-band helical antenna for satellite communications. This project focused on the vibrational modes between 1 and 50 Hz. Using COMSOL Multiphysics finite element modeling of helices were performed to predict mode shapes and frequencies to compare with both continuous wave (CW) and impulsive measurements. In the initial phase of the experimental work, five helical samples were constructed and evaluated. In the second phase of the study, one sample was chosen for more detailed quantitative measurements. In …


Curved Spacetime In The Causal Set Approach To Quantum Gravity, Ayush Dhital May 2021

Curved Spacetime In The Causal Set Approach To Quantum Gravity, Ayush Dhital

Honors Theses

Causal Set theory is an approach to quantum gravity. In this approach, the spacetime continuum is assumed to be discrete rather than continuous. The discrete points in a causal set can be seen as a continuum spacetime if they can be embedded in a manifold such that the causal structure is preserved. In this regard, a manifold can be constructed by embedding a causal set preserving causal information between the neighboring points. In this thesis, some of the fundamental properties of causal sets are discussed and the curvature and dimension information of Minkowski, de Sitter, and Anti-de Sitter spaces is …


Exploring Manifoldlike Causal Sets And Their Dimensions, Santosh Bhandari Apr 2021

Exploring Manifoldlike Causal Sets And Their Dimensions, Santosh Bhandari

Honors Theses

Causal Set Theory is an approach to quantum gravity that tries to replace the continuum spacetime structure of general relativity with the spacetime that has the property of discreteness and causality. From the standpoint of causal set theory, our spacetime is made up of discrete points that are causally related to one another. A causal set is said to be manifoldlike if it can be faithfully embedded in a Lorentzian manifold. In this thesis, some of the fundamental properties of causal sets are discussed. The first chapter is devoted to the historical background of quantum gravity with a discussion of …


A Valence-Bond Operator Algebra For Quantum Spin Models And Its Applications, Huu Tran Do Jan 2021

A Valence-Bond Operator Algebra For Quantum Spin Models And Its Applications, Huu Tran Do

Electronic Theses and Dissertations

The Heisenberg Hamiltonian is the prototype model for quantum magnetism. The Hamilto- nian includes exchange couplings between vector spins, which are the intrinsic magnetic moments of localized electrons. The classical energy between any pair of interacting spins can be minimized by aligning them parallel (ferromagnetic case) or antiparallel (antiferromagnetic), depending on the sign of the coupling. But quantum fluctuations play a key role, and a full quantum mechanical treatment of the many-body system is generally required. Finding the exact ground-state energy and wave function of isotropic antiferromagnetic (AFM) systems for an arbitrary spin-S and lattice morphology is still a challenging …


Search For Cpt And Lorentz Invariance Violation In The Muon G-2 Experiment At Fermilab, Meghna Bhattacharya Jan 2021

Search For Cpt And Lorentz Invariance Violation In The Muon G-2 Experiment At Fermilab, Meghna Bhattacharya

Electronic Theses and Dissertations

The Muon g-2 experiment at Fermilab (E989) aims to measure the anomalous magnetic moment of the muon, $a_{\mu}= (g-2)/2$, to a groundbreaking precision of $140$ ppb, obtaining a near four-fold increase in precision over the previous experiment, E821, at the Brookhaven National Laboratory (BNL). The value of $a_{\mu}$ from BNL currently differs from the Standard Model prediction by $\sim 3.7$ standard deviations, suggesting the potential for new physics and therefore, motivating a new experiment.Because the theory predicts this number with high precision, testing the g-factor through experiment provides a stringent test of the SM and can suggest physics beyond the …


Dynamics For Discretized Gravity In The Causal Set Approach, Benjamin Pilgrim Jan 2021

Dynamics For Discretized Gravity In The Causal Set Approach, Benjamin Pilgrim

Electronic Theses and Dissertations

Causal set theory is an approach to quantum gravity which replaces the continuous spacetime manifold with a discrete set of points and a partial order. In this work, I will focus on causal sets embeddable in two-dimensional manifolds, and define an action based on chains which in the continuum limit replicates the Einstein-Hilbert action; furthermore, I will propose a variational principle based on this action and numerically show it can distinguish nonflat manifoldlike causal sets from the most common type of nonmanifoldlike causal sets. I will then supplement this action with a boundary term similar to the Gibbons-Hawking-York boundary term …


1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains recorded and processed bubble sounds under different conditions: a few bubbles vs. constant flow bubbles. Each condition is tested with nitrogen and with methane.


4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all ReadMe files for test data, modeling data, and localization data, as well as the corresponding codes.


5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all codes for the study.


6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all conference presentations, manuscripts, technical reports, posters.


2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for acoustic bubble modeling.


3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for oil leakage source localization.


Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina May 2020

Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina

Honors Theses

Collie Box is a medical device that measures the gait parameters of the person walk- ing in front of it. This device uses the Ultrasonic Doppler system to extract the heel-contact and toe-off times of a person walking within the range of 2-10 meters. These times are used to determine the leg’s swing phase and double stance times. The ultrasonic transducer of 10mm diameter is driven at 40kHz. At the time of the heel-contact and toe-off, foot velocity is zero while the torso part of the human body is still in motion. The wide directivity of 10mm diameter ultrasonic transducer …


Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr. May 2020

Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr.

Honors Theses

In this project, the vibrational characteristics/vibrational modes are explored via Raman Spectroscopy for thiolated-gold nanoparticles. This class of compounds is also known as gold nanoparticles (AuNPs). They remain of great interest in research areas such as catalysis, gold dependent nanoelectronics, drug delivery, and sensing, due to their unique size-dependent optical, chiroptical, and electronic properties. Vibrational spectroscopy of thiolated gold nanoparticles are oftentimes considered nontrivial as the compounds strongly absorb light in the visible region of the electromagnetic spectrum, are generally considered weak scatterers, and give off large amounts of fluorescence. This combined with their black appearance, susceptibility to localized heating, …


Investigatin Actin-Myosin Mechanics To Model Heart Disease Using Fluorescence Microscopy And Optical Trapping, Justin Edward Reynolds May 2020

Investigatin Actin-Myosin Mechanics To Model Heart Disease Using Fluorescence Microscopy And Optical Trapping, Justin Edward Reynolds

Honors Theses

Hypertrophic cardiomyopathy (HCM) is a hereditary disease in which the myocardium becomes hypertrophied, making it more difficult for the heart to pump blood. HCM is commonly caused by a mutation in the β-cardiac myosin II heavy chain. Myosin is a motor protein that facilitates muscle contraction by converting chemical energy from ATP hydrolysis into mechanical work and concomitantly moving along actin filaments. Optical tweezers have been used previously to analyze single myosin biophysical properties; however, myosin does not work as a single unit within the heart. Multiple myosin interacts to displace actin filaments and do not have the same properties …


Encoding A 1-D Heisenberg Spin 1/2 Chain In A Simulated Annealing Algorithm For Machine Learning, Daniel Pompa May 2019

Encoding A 1-D Heisenberg Spin 1/2 Chain In A Simulated Annealing Algorithm For Machine Learning, Daniel Pompa

Honors Theses

The application areas of machine learning techniques are becoming broader and increasingly ubiquitous in the natural sciences and engineering. One such field of interest within the physics community is the training and implementation of neural networks to aid in quantum many-body computations. Conversely, research exploring the possible computational benefits of using quantum many-body dynamics in the area of artificial intelligence and machine learning has also recently started to gain traction. The marriage of these fields comes naturally with the complementary nature of their mathematical frameworks. The objective of this study was to explore the possibility of encoding a quantum spin …


Wind-Induced Ground Motion: Dynamic Model And Non-Uniform Structure For Ground, Mohammad Mohammadi, Craig J. Hickey, Richard Raspet, Vahid Naderyan Jan 2019

Wind-Induced Ground Motion: Dynamic Model And Non-Uniform Structure For Ground, Mohammad Mohammadi, Craig J. Hickey, Richard Raspet, Vahid Naderyan

Faculty and Student Publications

Wind-induced ground vibrations are a source of noise in seismic surveys. In a previous study, a wind-ground coupling theory was developed to predict the power spectral density (PSD) of ground motions caused by wind perturbations on the ground surface. The prediction was developed using a superposition of the point source response of an elastic isotropic homogeneous medium deforming quasi-statically with the statistical description of the wind-induced pressure fluctuations on the ground. Model predictions and field measurements were in agreement for the normal component of the displacement but under predicted the horizontal component. In this paper, two generalizations are investigated to …


Geographic Variations Of Sound Channel Axis In The Global Ocean, Mukunda Kumar Acharya Jan 2019

Geographic Variations Of Sound Channel Axis In The Global Ocean, Mukunda Kumar Acharya

Electronic Theses and Dissertations

Sound signals are used for imaging and communication in the ocean. Underwater sound speed has a minimum at a certain depth that forms a sound channel for long-range underwater sound propagation. The geographic variation of sound channel is crucial in uses of underwater sound in various environments including ocean acoustic tomography and monitoring of global warming. In this work, sound speed and depth of the channel axis in the global ocean are characterized for their variation with the latitude, longitude, and depth.


Manifoldlike Causal Sets, Miremad Aghili Jan 2019

Manifoldlike Causal Sets, Miremad Aghili

Electronic Theses and Dissertations

The content of this dissertation is written in a way to answer the important question of manifold likeness of causal sets. This problem has importance in the sense that in the continuum limit and in the case one finds a formalism for the sum over histories, the result requires to be embeddable in a manifold to be able to reproduce General Relativity. In what follows I will use the distribution of path length in a causal set to assign a measure for manifold likeness of causal sets to eliminate the dominance of nonmanifold like causal sets. The distribution of interval …


Acoustic Radiation Force On A Fluid To Fluid Boundary By Phase Plate Focused Ultrasound, Robert Lee Lirette Jan 2019

Acoustic Radiation Force On A Fluid To Fluid Boundary By Phase Plate Focused Ultrasound, Robert Lee Lirette

Electronic Theses and Dissertations

In this study, the physics and applications of the ultrasonic radiation force at the interface between two immiscible fluids were investigated. These studies were performed using low-profile discrete-stepped lenses to the modify the phase of the incident radiation generating multiple field morphologies. In its first application to acoustics, a fraxicon lens was developed to approximate the field generated by an axicon. This type of lens creates a minimally diffractive Bessel beam and long depth of focus that is useful in ultrasonic imaging, therapy, and non-destructive evaluation techniques. Fields modified by fraxicon, Fresnel, and axicon lenses were characterized experimentally by scanning …


Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh Jan 2019

Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh

Electronic Theses and Dissertations

We use the Teukolsky formalism to calculate the gravitational radiation from a non-axi\-symmetric cloud formed due to superradiant amplification of a spin-0 bosonic field. We focus on the prospects of the future space-based gravitational wave detector, Laser Interferometer Space Antenna (LISA), and the current version of ground-based detector, Advanced Laser Interferometer Gravitational-Wave Observatory (AdLIGO), to detect or constrain scalars with mass in the range $m_s\in [10^{-19},10^{-15}]$ eV and $m_s\in[10^{-14},10^{-11}]$ eV, respectively. Using astrophysical models of black hole populations calibrated to observations we find that, in optimistic scenarios, AdLIGO could detect up to $10^4$ resolvable events in a four-year search if …


Measurements Of The Primary Bjerknes Force In A Cavitating Ultrasonic Field, Mason Smith Jan 2019

Measurements Of The Primary Bjerknes Force In A Cavitating Ultrasonic Field, Mason Smith

Honors Theses

Cavitation is the result when there are rapid changes in pressure in a liquid. These vapor-filled cavities can occur when ultrasound propagates through water at sufficient power. The volumes of these cavities can pulsate and can even couple with the radiation pressure from the ultrasound. The result is a translational force on the bubbles. This translational force on the bubble is called the primary Bjerknes force. The secondary Bjerknes force is the result of two pulsating cavities, but this force is ignored since the buoyant force and the primary Bjerknes force are the dominant forces. Immediately before a bubble begins …