Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Quantum Field Theories, Topological Materials, And Topological Quantum Computing, Muhammad Ilyas Dec 2021

Quantum Field Theories, Topological Materials, And Topological Quantum Computing, Muhammad Ilyas

Dissertations and Theses

A quantum computer can perform exponentially faster than its classical counterpart. It works on the principle of superposition. But due to the decoherence effect, the superposition of a quantum state gets destroyed by the interaction with the environment. It is a real challenge to completely isolate a quantum system to make it free of decoherence. This problem can be circumvented by the use of topological quantum phases of matter. These phases have quasiparticles excitations called anyons. The anyons are charge-flux composites and show exotic fractional statistics. When the order of exchange matters, then the anyons are called non-Abelian anyons. Majorana …


The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse Sep 2021

The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse

Dissertations and Theses

With data from experiments on a jet of air emitting from an orifice flush with the floor of a wind tunnel providing a transverse flow, analysis is conducted to extract information about the state of anisotropy in the Reynolds stress tensor. Inflow velocities are modulated across two distinct turbulence intensity regimes while holding jet exit conditions constant, providing an opportunity to isolate effects of both jet to crossflow velocity ratio, r and the effects of the turbulence carried by the crossflow. Anisotropy in the Reynolds stress tensor is examined through anisotropy invariant maps and evolution of the function F, …


Efficient Neuromorphic Algorithms For Gamma-Ray Spectrum Denoising And Radionuclide Identification, Merlin Phillip Carson Sep 2021

Efficient Neuromorphic Algorithms For Gamma-Ray Spectrum Denoising And Radionuclide Identification, Merlin Phillip Carson

Dissertations and Theses

Radionuclide detection and identification are important tasks for deterring a potentially catastrophic nuclear event. Due to high levels of background radiation from both terrestrial and extraterrestrial sources, some form of noise reduction pre-processing is required for a gamma-ray spectrum prior to being analyzed by an identification algorithm so as to determine the identity of anomalous sources. This research focuses on the use of neuromorphic algorithms for the purpose of developing low power, accurate radionuclide identification devices that can filter out non-anomalous background radiation and other artifacts created by gamma-ray detector measurement equipment, along with identifying clandestine, radioactive material.

A sparse …


Investigation Of Environmental-Friendly, Membraneless Hydrogen Peroxide Fuel Cells, Bao Nguyen Aug 2021

Investigation Of Environmental-Friendly, Membraneless Hydrogen Peroxide Fuel Cells, Bao Nguyen

Dissertations and Theses

Human-induced climate change is one of the biggest threats to humanity in the 21st century. This is caused by the increase in greenhouse gas concentrations in the Earth's atmosphere. The burning of fossil fuels is the primary cause of climate change. This problem can be addressed by replacing fossil fuels with fuel sources that have clean by-products and are cost-effective. For the last few decades, hydrogen (H2) has been extensively studied as an alternative to carbon-based fossil fuels. Currently, H2 still has many shortcomings for commercial applications. The photocatalytic production of H2 still suffers from …


Proximal Policy Optimization For Radiation Source Search, Philippe Erol Proctor Aug 2021

Proximal Policy Optimization For Radiation Source Search, Philippe Erol Proctor

Dissertations and Theses

Rapid localization and search for lost nuclear sources in a given area of interest is an important task for the safety of society and the reduction of human harm. Detection, localization and identification are based upon the measured gamma radiation spectrum from a radiation detector. The nonlinear relationship of electromagnetic wave propagation paired with the probabilistic nature of gamma ray emission and background radiation from the environment leads to ambiguity in the estimation of a source's location. In the case of a single mobile detector, there are numerous challenges to overcome such as weak source activity, multiple sources, or the …


Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam Jul 2021

Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam

Dissertations and Theses

The Photoemission electron microscopes (PEEM) is a powerful tool capable of synchronously imaging wave nature of light manifested by interference patterns as well as its particle nature through the energy exchange between the incident photons and the photoemitted imaging electrons. PEEM offers a non-invasive high-resolution approach for studying light propagation and interaction phenomena within a nanophotonic waveguide [7,8]. The electric field intensity variation of the interference pattern yielded by the interaction between the incident light and the guided mode coupled into the waveguide produces varying photoemission yields creating contrast in PEEM image. The guided modes cannot be excited simply by …


Self-Contained Photon Coincidence Counting With Ni Myrio Ecosystem, Georges Oates Larsen, Andres H. La Rosa Jun 2021

Self-Contained Photon Coincidence Counting With Ni Myrio Ecosystem, Georges Oates Larsen, Andres H. La Rosa

University Honors Theses

Digital coincidence counting units (CCU) have made experimental verification of fundamental quantum mechanical principles financially accessible to undergraduate level teaching programs. However, recent implementations of these systems are not easily ported to National Instruments (NI) FPGAs, making them unsuitable for physics departments that have heavily invested in the NI ecosystem. Therefore, there is clear need for a detailed implementation based on an NI FPGA. We present a formal description of one such implementation, based on the NI myRIO (NI's lower-cost, student-oriented offering) which achieves 6.9 ns minimum guaranteed-distinguishable delay and 32.2 MHz peak coincidence counting rate with four input channels …


Photoemission Electron Microscopy For Direct Observation Of Photonic And Plasmonic Phenomena, Theodore Stenmark May 2021

Photoemission Electron Microscopy For Direct Observation Of Photonic And Plasmonic Phenomena, Theodore Stenmark

Dissertations and Theses

Photoemission electron microscopy (PEEM) is a high-resolution microscopy technique that collects photoemitted electrons from the sample surface to form an image. PEEM offers a non-scanning imaging method with a spatial resolution in the range of 5-100nm by combining the advantages of light excitation and electron imaging. Our work looks at PEEM as an analysis tool for photonic and plasmonic phenomena. Photonic wave guiding structures exhibiting a strong dispersion relation have attracted considerable attention for applications in integrated optics, communications and sensing devices. Line defects in a photonic crystal (PC) slab offer a highly efficient way to create light with group …


Quantifying Biotic Voc Emissions From Moss: Air Quality Impacts Of Isoprene And Monoterpenes In Urban Environments, Danlyn L. Brennan Apr 2021

Quantifying Biotic Voc Emissions From Moss: Air Quality Impacts Of Isoprene And Monoterpenes In Urban Environments, Danlyn L. Brennan

University Honors Theses

Plant-derived biogenic volatile organic compound (VOC) emissions contribute to secondary emissions of molecules such as ground-level ozone (O3) and PM 2.5 which are known to be harmful to the environment and negatively impact human health. Currently, the most known biogenic VOC emissions are from vascular plants like trees and economically significant crops. Air quality models use known emission rates from these measurements and have many unknown sources yet to identify. Unknown values of emissions occur due to a lack of measurements of a wider variety of plants, especially that of smaller and lesser-studied species of bryophytes; mosses. This …


Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew Mar 2021

Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew

Dissertations and Theses

Chemo-hydrodynamics generated from reaction-diffusion-convection processes of autocatalytic chemical systems are extensively studied for their applications in modeling complex systems. Compared to the more extensively studied autocatalytic systems, chlorite-tetrathionate and chlorite-trithionate, the chlorite-thiourea systems is relatively unexplored. Compared to the two previous systems, chlorite-thiourea has more straightforward chemical kinetics. To narrow the gap between chlorite-thiourea and the other systems a combination of experimental study and numerical simulation were employed to quantify this system.

Compared to established literature, experiments were performed at five orders of magnitude lower concentration of indicator, minimizing confounding effects of indicator on hydrodynamic motion. To accurately image the …