Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 95

Full-Text Articles in Physical Sciences and Mathematics

Design And Commissioning Of An E-Beam Irradiation Beamline At The Upgraded Injector Test Facility At Jefferson Lab, Xi Li, Helmut Baumgart, Charles Bott, Gianluigi Ciovati, Shaun Gregory, Fay Hannon, Mike Mccaughan, Robert Pearce, Matthew Poelker, Hannes Vennekate, Shaoheng Wang Jun 2022

Design And Commissioning Of An E-Beam Irradiation Beamline At The Upgraded Injector Test Facility At Jefferson Lab, Xi Li, Helmut Baumgart, Charles Bott, Gianluigi Ciovati, Shaun Gregory, Fay Hannon, Mike Mccaughan, Robert Pearce, Matthew Poelker, Hannes Vennekate, Shaoheng Wang

Electrical & Computer Engineering Faculty Publications

The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a continuous-wave superconducting linear accelerator capable of providing an electron beam with energy up to 10 MeV. A beamline for electron-beam irradiation has been designed, installed and successfully commissioned at this facility, aimed at the degradation study of 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) in wastewater treatment. A solenoid with a peak axial magnetic field of up to 0.28 T and a set of raster coils were used to obtain a Gaussian beam profile with a transverse standard deviation of ∼15.0 mm at the target location. Monte-Carlo simulations using …


Two-Current Transition Amplitudes With Two-Body Final States, Keegan H. Sherman, Feliipe G. Ortega-Gama, Raúl A. Briceño, Andrew W. Jackura Jun 2022

Two-Current Transition Amplitudes With Two-Body Final States, Keegan H. Sherman, Feliipe G. Ortega-Gama, Raúl A. Briceño, Andrew W. Jackura

Physics Faculty Publications

We derive the on-shell form of amplitudes containing two external currents with a single hadron in the initial state and two hadrons in the final state, denoted as 1 + J → 2 + J . This class of amplitude is relevant in precision tests of the Standard Model as well as for exploring the structure of excited states in the QCD spectrum. We present a model-independent description of the amplitudes where we sum to all orders in the strong interaction. From this analytic form we are able to extract transition and elastic resonance form factors consistent with previous work …


Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi May 2022

Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi

Electrical & Computer Engineering Faculty Publications

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids …


A Super Fast Algorithm For Estimating Sample Entropy, Weifeng Liu, Ying Jiang, Yuesheng Xu Apr 2022

A Super Fast Algorithm For Estimating Sample Entropy, Weifeng Liu, Ying Jiang, Yuesheng Xu

Mathematics & Statistics Faculty Publications

: Sample entropy, an approximation of the Kolmogorov entropy, was proposed to characterize complexity of a time series, which is essentially defined as − log(B/A), where B denotes the number of matched template pairs with length m and A denotes the number of matched template pairs with m + 1, for a predetermined positive integer m. It has been widely used to analyze physiological signals. As computing sample entropy is time consuming, the box-assisted, bucket-assisted, x-sort, assisted sliding box, and kd-tree-based algorithms were proposed to accelerate its computation. These algorithms require O(N2) or …


Partial Muon Capture Rates In A = 3 And A = 6 Nuclei With Chiral Effective Field Theory, G. B. King, S. Pastore, M. Piarulli, Rocco Schiavilla Apr 2022

Partial Muon Capture Rates In A = 3 And A = 6 Nuclei With Chiral Effective Field Theory, G. B. King, S. Pastore, M. Piarulli, Rocco Schiavilla

Physics Faculty Publications

Searches for neutrinoless double-β decay rates are crucial in addressing questions within fundamental symmetries and neutrino physics. The rates of these decays depend not only on unknown parameters associated with neutrinos, but also on nuclear properties. In order to reliably extract information about the neutrino, one needs an accurate treatment of the complex many-body dynamics of the nucleus. Neutrinoless double-β decays take place at momentum transfers on the order of 100MeV /c and require both nuclear electroweak vector and axial current matrix elements. Muon capture, a process in the same momentum transfer regime, has readily available experimental data to validate …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein Jan 2022

Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein

Physics Faculty Publications

No abstract provided.


Vertical Artifacts In High-Resolution Worldview-2 And Worldview-3 Satellite Imagery Of Aquatic Systems, Megan M. Coffer, Peter J. Whitman, Blake A. Schaeffer, Victoria Hill, Richard C. Zimmerman, Wilson B. Salls, Marie C. Lebrasse, David D. Graybill Jan 2022

Vertical Artifacts In High-Resolution Worldview-2 And Worldview-3 Satellite Imagery Of Aquatic Systems, Megan M. Coffer, Peter J. Whitman, Blake A. Schaeffer, Victoria Hill, Richard C. Zimmerman, Wilson B. Salls, Marie C. Lebrasse, David D. Graybill

OES Faculty Publications

Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobeʻs (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated the impact of vertical artefacts on both at-sensor radiance and a spectral index for …


On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark Jan 2022

On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark

Mathematics & Statistics Faculty Publications

A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current …


Stratospheric Aerosol Composition Observed By The Atmospheric Chemistry Experiment Following The 2019 Raikoke Eruption, Chris D. Boone, Peter F. Bernath, Keith Labelle, Jeff Crouse Jan 2022

Stratospheric Aerosol Composition Observed By The Atmospheric Chemistry Experiment Following The 2019 Raikoke Eruption, Chris D. Boone, Peter F. Bernath, Keith Labelle, Jeff Crouse

Chemistry & Biochemistry Faculty Publications

Infrared aerosol spectra derived from Atmospheric Chemistry Experiment measurements following the June 2019 Raikoke volcanic eruption are used to evaluate the composition of stratospheric aerosols in the Arctic. A blanket of aerosols, spanning an altitude range from the tropopause (8–11 km) to 20 km, persisted in the stratosphere over northern latitudes for many months. The aerosols within this blanket were almost exclusively sulfates. The percentage of sulfuric acid in the aerosols decreased over time, dropping below 50% H2SO4 concentration at some altitudes by March 2020. Contrary to previous reports, the aerosol blanket was not comprised of smoke …


M-Cubes: An Efficient And Portable Implementation Of Multi-Dimensional Integration For Gpus, Ioannis Sakiotis, Kamesh Arumugam, Marc Paterno, Desh Ranjan, Balŝa Terzić, Mohammad Zubair Jan 2022

M-Cubes: An Efficient And Portable Implementation Of Multi-Dimensional Integration For Gpus, Ioannis Sakiotis, Kamesh Arumugam, Marc Paterno, Desh Ranjan, Balŝa Terzić, Mohammad Zubair

Computer Science Faculty Publications

The task of multi-dimensional numerical integration is frequently encountered in physics and other scientific fields, e.g., in modeling the effects of systematic uncertainties in physical systems and in Bayesian parameter estimation. Multi-dimensional integration is often time-prohibitive on CPUs. Efficient implementation on many-core architectures is challenging as the workload across the integration space cannot be predicted a priori. We propose m-Cubes, a novel implementation of the well-known Vegas algorithm for execution on GPUs. Vegas transforms integration variables followed by calculation of a Monte Carlo integral estimate using adaptive partitioning of the resulting space. mCubes improves performance on GPUs by maintaining relatively …


Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco Jan 2022

Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco

Computer Science Faculty Publications

We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event …


The Cross-Section Measurement For The 3H (E, E', K+) Nnλ Reaction, K. N. Suzuki, T. Gogami, B. Pandey, Florian Hauenstein, Charles E. Hyde, Z. Ye, J. Zhang, X. Zheng, Et Al. Jan 2022

The Cross-Section Measurement For The 3H (E, E', K+) Nnλ Reaction, K. N. Suzuki, T. Gogami, B. Pandey, Florian Hauenstein, Charles E. Hyde, Z. Ye, J. Zhang, X. Zheng, Et Al.

Physics Faculty Publications

The small binding energy of the hypertriton leads to predictions of the non-existence of bound hypernuclei for isotriplet three-body systems such as nnΛ. However, invariant mass spectroscopy at GSI has reported events that may be interpreted as the bound nnΛ state. The nnΛ state was sought by missing-mass spectroscopy via the (e, e′K+) reaction at Jefferson Lab’s experimental Hall A. The present experiment has higher sensitivity to the nnΛ-state investigation in terms of better precision by a factor of about three. The analysis shown in this article focuses on the derivation of the reaction cross-section for …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Searching For An Enhanced Signal Of The Onset Of Color Transparency In Baryons With D(E,E′P)N Scattering, Shujie Li, Carlos Yero, Jennifer Rittenhouse West, Clare Bennett, Wim Cosyn, Douglas Higinbotham, Misak Sargsian, Holly Szumila-Vance Jan 2022

Searching For An Enhanced Signal Of The Onset Of Color Transparency In Baryons With D(E,E′P)N Scattering, Shujie Li, Carlos Yero, Jennifer Rittenhouse West, Clare Bennett, Wim Cosyn, Douglas Higinbotham, Misak Sargsian, Holly Szumila-Vance

Physics Faculty Publications

Observation of the onset of color transparency in baryons would provide a new means of studying the nuclear strong force and would be the first clear evidence of baryons transforming into a color-neutral point-like size in the nucleus as predicted by quantum chromodynamics. Recent C (e, e′p) results from electron-scattering did not observe the onset of color transparency (CT) in protons up to spacelike four-momentum transfers squared, Q2 = 14.2 GeV 2 . The traditional methods of searching for CT in (e, e′p) scattering use heavy targets favoring kinematics with already initially reduced final state interactions (FSIs) such that …


X17 Boson And The ³H(P, E⁺E⁻) ⁴He And ³He(N,E⁺E⁻) ⁴He Processes: A Theoretical Analysis, M. Viviani, E. Filandri, C. Gustavino, A. Kievsky, L. E. Marcucci, Rocco Schiavilla Jan 2022

X17 Boson And The ³H(P, E⁺E⁻) ⁴He And ³He(N,E⁺E⁻) ⁴He Processes: A Theoretical Analysis, M. Viviani, E. Filandri, C. Gustavino, A. Kievsky, L. E. Marcucci, Rocco Schiavilla

Physics Faculty Publications

The present work deals with e+−e pair production in the four-nucleon system. We first analyze the process as a purely electromagnetic one in the context of a state-of-the-art approach to nuclear strong-interaction dynamics and nuclear electromagnetic currents, derived from chiral effective field theory (χEFT). Next, we examine how the exchange of a hypothetical low-mass boson would impact the cross section for such a process. We consider several possibilities, that this boson is either a scalar, pseudoscalar, vector, or axial particle. The ab initio calculations use exact hyperspherical-harmonics methods to describe the bound state and low-energy spectrum of …


Rock Paintings: Solutions For Fermi Questions, September 2022, John Adam Jan 2022

Rock Paintings: Solutions For Fermi Questions, September 2022, John Adam

Mathematics & Statistics Faculty Publications

No abstract provided.


Modeling A Nb3Sn Cryounit In Gpt In Uitf, Sunil Pokharel, Geoffey A. Krafft, A. S. Hofler Jan 2022

Modeling A Nb3Sn Cryounit In Gpt In Uitf, Sunil Pokharel, Geoffey A. Krafft, A. S. Hofler

Physics Faculty Publications

Nb₃Sn is a prospective material for future superconducting RF (SRF) accelerator cavities. The material can achieve higher quality factors, higher temperature operation and potentially higher accelerating gradients (E_{acc} 96 MV/m) compared to conventional niobium. In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb₃Sn cavities. We studied the effects of the buncher cavity and varied the gun voltages from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb₃Sn five-cell cavities energy gains with the framework of General Particle Tracer (GPT). Our calculations show …


Cooling Performance In A Dual Energy Storage Ring Cooler, B. Dhital, Y. S. Derbenev, D. Douglas, G. A. Krafft, H. Zhang, F. Lin, V. S. Morozov, Y. Zhang Jan 2022

Cooling Performance In A Dual Energy Storage Ring Cooler, B. Dhital, Y. S. Derbenev, D. Douglas, G. A. Krafft, H. Zhang, F. Lin, V. S. Morozov, Y. Zhang

Physics Faculty Publications

The longitudinal and transverse emittance growth in hadron beams due to intra-beam scattering (IBS) and other heating sources deteriorate the luminosity in a collider. Hence, a strong hadron beam cooling is required to reduce and preserve the emittance. The cooling of high energy hadron beam is challenging. We propose a dual energy storage ring-based electron cooler that uses an electron beam to extract heat away from hadron beam in the cooler ring while the electron beam is cooled by synchrotron radiation damping in the high energy damping ring. In this paper, we present a design of a dual energy storage …


Combining Nonperturbative Transverse Momentum Dependence With Tmd Evolution, J.O. Gonzalez-Hernandez, T. C. Rogers, N. Sato Jan 2022

Combining Nonperturbative Transverse Momentum Dependence With Tmd Evolution, J.O. Gonzalez-Hernandez, T. C. Rogers, N. Sato

Physics Faculty Publications

Central to understanding the nonperturbative, intrinsic partonic nature of hadron structure are the concepts of transverse momentum dependent (TMD) parton distribution and fragmentation functions. A TMD factorization approach to the phenomenology of semi-inclusive processes that includes evolution, higher orders, and matching to larger transverse momentum is ultimately necessary for reliably connecting with phenomenologically extracted nonperturbative structures, especially when widely different scales are involved. In this paper, we will address some of the difficulties that arise when phenomenological techniques that were originally designed for very high energy applications are extended to studies of hadron structures, and we will solidify the connection …


Study Of ⋀N Fsi With ⋀ Quasi-Free Productions On The ³H (E, E'K⁺) X Reaction At Jlab, K. Itabashi, K. N. Suzuki, B. Pandey, K. Okuyama, T. Gogami, S. Nagao, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Milhovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng Jan 2022

Study Of ⋀N Fsi With ⋀ Quasi-Free Productions On The ³H (E, E'K⁺) X Reaction At Jlab, K. Itabashi, K. N. Suzuki, B. Pandey, K. Okuyama, T. Gogami, S. Nagao, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Milhovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng

Physics Faculty Publications

An nnΛ is a neutral baryon system with no charge. The study of the pure Λ-neutron system such as nnΛ gives us information on the Λn interaction. The nnΛ search experiment (E12-17-003) was performed at JLab Hall A in 2018. In this article, the Λn FSI was investigated by a shape analysis of the 3H(e, e′K+)X missing mass spectrum, and a preliminary result for the Λn FSI study is given.


A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić Jan 2022

A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić

Physics Faculty Publications

Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard …


Short-Distance Structure Of Unpolarized Gluon Pseudodistributions, Ian Balitsky, Wayne Morris, Anatoly Radyushkin Jan 2022

Short-Distance Structure Of Unpolarized Gluon Pseudodistributions, Ian Balitsky, Wayne Morris, Anatoly Radyushkin

Physics Faculty Publications

We present the results that form the basis for calculations of the unpolarized gluon parton distributions (PDFs) using the pseudo-PDF approach. We give the results for the most complicated box diagram both for gluon bilocal operators with arbitrary indices and for combinations of indices corresponding to three matrix elements that are most convenient to extract the twist-2 invariant amplitude. We also present detailed results for the gluon-quark transition diagram. The additional results for the box diagram and the gluon-quark contribution may be used for extractions of the gluon PDF from different matrix elements, with a possible cross-check of the results …


Transversity Parton Distribution Function Of The Nucleon Using The Pseudodistribution Approach, Colin Egerer, Christos Kallidonis, Joseph Karpie, Nikhil Karthik, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2022

Transversity Parton Distribution Function Of The Nucleon Using The Pseudodistribution Approach, Colin Egerer, Christos Kallidonis, Joseph Karpie, Nikhil Karthik, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

We present a determination of the nonsinglet transversity parton distribution function (PDF) of the nucleon, normalized with respect to the tensor charge at μ2 ¼ 2 GeV2 from lattice quantum chromodynamics. We apply the pseudodistribution approach, using a gauge ensemble with a lattice spacing of 0.094 fm and the light quark mass tuned to a pion mass of 358 MeV. We extract the transversity PDF from the analysis of the short-distance behavior of the Ioffe-time pseudodistribution using the leading-twist nextto-leading order (NLO) matching coefficients calculated for transversity. We reconstruct the x-dependence of the transversity PDF through an expansion in a …


Measurement Of Charged-Pion Production In Deep-Inelastic Scattering Off Nuclei With The Clas Detector, Clas Collaboration, S. Morán, R. Dupre, H. Hakobyan, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Sebastian Kuhn, Pushpa Pandey, Jiwan Poudel, Yelena Prok, Lawrence B. Weinstein, N. Zachariou, J. Zhang, Z. W. Zhao, Et Al. Jan 2022

Measurement Of Charged-Pion Production In Deep-Inelastic Scattering Off Nuclei With The Clas Detector, Clas Collaboration, S. Morán, R. Dupre, H. Hakobyan, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Sebastian Kuhn, Pushpa Pandey, Jiwan Poudel, Yelena Prok, Lawrence B. Weinstein, N. Zachariou, J. Zhang, Z. W. Zhao, Et Al.

Physics Faculty Publications

Background: Energetic quarks in nuclear deep-inelastic scattering propagate through the nuclear medium. Processes that are believed to occur inside nuclei include quark energy loss through medium-stimulated gluon bremsstrahlung and intranuclear interactions of forming hadrons. More data are required to gain a more complete understanding of these effects.

Purpose: To test the theoretical models of parton transport and hadron formation, we compared their predictions for the nuclear and kinematic dependence of pion production in nuclei.

Methods: We have measured charged-pion production in semi-inclusive deep-inelastic scattering off D, C, Fe, and Pb using the CLAS detector and the CEBAF 5.014-GeV electron beam. …


Search For Photoproduction Of Axionlike Particles At Gluex, Shankar Adhikari, C.S. Akondi, M. Albrecht, Moskov Amaryan, Tyler P. Viducic, Z. Zhang, Z. Zhao, J. Zhou, The Gluex Collaboration, Et Al. Jan 2022

Search For Photoproduction Of Axionlike Particles At Gluex, Shankar Adhikari, C.S. Akondi, M. Albrecht, Moskov Amaryan, Tyler P. Viducic, Z. Zhang, Z. Zhao, J. Zhou, The Gluex Collaboration, Et Al.

Physics Faculty Publications

We present a search for axionlike particles, a, produced in photon-proton collisions at a center-of-mass energy of approximately 4 GeV, focusing on the scenario where the a-gluon coupling is dominant. The search uses a → γγ and a → π+ππ0 decays, and a data sample corresponding to an integrated luminosity of 168  pb−1 collected with the GlueX detector. The search for a → γγ decays is performed in the mass range of 180 < ma <480  MeV, while the search for a → π+ππ0 decays explores the 600 < ma …


Solutions For Fermi Questions, January 2022: Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein Jan 2022

Solutions For Fermi Questions, January 2022: Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein

Physics Faculty Publications

No abstract provided.


Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao Jan 2022

Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao

Physics Faculty Publications

We perform a study on the structure of the inverse moment (IM) of quasidistributions, by taking B-meson quasidistribution amplitude (quasi-DA) as an example. Based on a one-loop calculation, we derive the renormalization group equation and velocity evolution equation for the first IM of quasi-DA. We find that, in the large velocity limit, the first IM of B-meson quasi-DA can be factorized into IM as well as logarithmic moments of light-cone distribution amplitude (LCDA), accompanied by short distance coefficients. Our results can be useful either in understanding the patterns of perturbative matching in large momentum effective theory or evaluating inverse …


Athena Detector Proposal — A Totally Hermetic Electron Nucleus Apparatus Proposed For Ip6 At The Electron-Ion Collider, J. Adam, L. Adamczyk, N. Agrawal, C. Aidala, W. Akers, M. Alekseev, M.M. Allen, F. Ameli, A. Angerami, P. Antonioli, N. J. Apadula, A. Aprahamian, W. Armstrong, M. Arratia, J. R. Arrington, A. Asaturyan, E. C. Aschenauer, K. Augsten, S. Aune, M. Żurek, Et Al. Jan 2022

Athena Detector Proposal — A Totally Hermetic Electron Nucleus Apparatus Proposed For Ip6 At The Electron-Ion Collider, J. Adam, L. Adamczyk, N. Agrawal, C. Aidala, W. Akers, M. Alekseev, M.M. Allen, F. Ameli, A. Angerami, P. Antonioli, N. J. Apadula, A. Aprahamian, W. Armstrong, M. Arratia, J. R. Arrington, A. Asaturyan, E. C. Aschenauer, K. Augsten, S. Aune, M. Żurek, Et Al.

Physics Faculty Publications

ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges.


Improved Electrostatic Design Of The Jefferson Lab 300 Kv Dc Photogun And The Minimization Of Beam Deflection, M. A. Mamun, D. B. Bullard, J. R. Delayen, J. M. Grames, C. Hernandez-Garcia, Geoffrey A. Krafft, M. Poelker, R. Suleiman, S.A.K. Wijethunga Jan 2022

Improved Electrostatic Design Of The Jefferson Lab 300 Kv Dc Photogun And The Minimization Of Beam Deflection, M. A. Mamun, D. B. Bullard, J. R. Delayen, J. M. Grames, C. Hernandez-Garcia, Geoffrey A. Krafft, M. Poelker, R. Suleiman, S.A.K. Wijethunga

Physics Faculty Publications

An electron beam with high bunch charge and high repetition rate is required for electron cooling of the ion beam to achieve the high luminosity required for the proposed electron-ion colliders. An improved design of the 300 kV DC high voltage photogun at Jefferson Lab was incorporated toward overcoming the beam loss and space charge current limitation experienced in the original design. To reach the bunch charge goal of ~ few nC within 75 ps bunches, the existing DC high voltage photogun electrodes and anode-cathode gap were modified to increase the longitudinal electric field (Ez) at the photocathode. The anode-cathode …