Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Photoacoustic And Nephelometric Spectroscopy Of Aerosol Optical Properties With A Supercontinuum Light Source, Neha Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni Dec 2013

Photoacoustic And Nephelometric Spectroscopy Of Aerosol Optical Properties With A Supercontinuum Light Source, Neha Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni

Michigan Tech Publications

A novel multi-wavelength photoacousticnephelometer spectrometer (SC-PNS) has been developed for the optical characterization of atmospheric aerosol particles. This instrument integrates a white light supercontinuum laser with photoacoustic and nephelometric spectroscopy to measure aerosol absorption and scattering coefficients at five wavelength bands (centered at 417, 475, 542, 607, and 675 nm). These wavelength bands are selected from the continuous spectrum of the laser (ranging from 400-2200 nm) using a set of optical interference filters. Absorption and scattering measurements on laboratory-generated aerosol samples were performed sequentially at each wavelength band. To test the instrument we measured the wavelength dependence of absorption and …


Formation Of Nanodiamonds At Near-Ambient Conditions Via Microplasma Dissociation Of Ethanol Vapour, Ajay Kumar, Pin Ann Lin, Albert Xue, Boyi Hao, Yoke Khin Yap, R. Mohan Sankaran Oct 2013

Formation Of Nanodiamonds At Near-Ambient Conditions Via Microplasma Dissociation Of Ethanol Vapour, Ajay Kumar, Pin Ann Lin, Albert Xue, Boyi Hao, Yoke Khin Yap, R. Mohan Sankaran

Department of Physics Publications

Clusters of diamond-phase carbon, known as nanodiamonds, exhibit novel mechanical, optical and biological properties that have elicited interest for a wide range of technological applications. Although diamond is predicted to be more stable than graphite at the nanoscale, extreme environments are typically used to produce nanodiamonds. Here we show that nanodiamonds can be stably formed in the gas phase at atmospheric pressure and neutral gas temperatures <100 °C by dissociation of ethanol vapour in a novel microplasma process. Addition of hydrogen gas to the process allows in flight purification by selective etching of the non-diamond carbon and stabilization of the nanodiamonds. The nanodiamond particles are predominantly between 2 and 5 nm in diameter, and exhibit cubic diamond, n-diamond and lonsdaleite crystal structures, similar to nanodiamonds recovered from meteoritic residues. These results may help explain the origin of nanodiamonds in the cosmos, and offer a simple and inexpensive route for the …


The Fine-Scale Structure Of The Trade Wind Cumuli Over Barbados – An Introduction To The Carriba Project, H. Siebert, M. Beals, J. Bethke, E. Bierwirth, T. Conrath, K. Dieckmann, F. Ditas, A. Ehrlich, D. Farrell, S. Hartmann, M. A. Izaguirre, J. Katzwinkel, L. Nuijens, G. Roberts, M. Schäfer, R. A. Shaw, T. Schmeissner, I. Serikov, B. Stevens, F. Stratmann, B. Wehner, M. Wendisch, F. Werner, H. Wex Oct 2013

The Fine-Scale Structure Of The Trade Wind Cumuli Over Barbados – An Introduction To The Carriba Project, H. Siebert, M. Beals, J. Bethke, E. Bierwirth, T. Conrath, K. Dieckmann, F. Ditas, A. Ehrlich, D. Farrell, S. Hartmann, M. A. Izaguirre, J. Katzwinkel, L. Nuijens, G. Roberts, M. Schäfer, R. A. Shaw, T. Schmeissner, I. Serikov, B. Stevens, F. Stratmann, B. Wehner, M. Wendisch, F. Werner, H. Wex

Michigan Tech Publications

The CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) project, focused on high resolution and collocated measurements of thermodynamic, turbulent, microphysical, and radiative properties of trade wind cumuli over Barbados, is introduced. The project is based on two one-month field campaigns in November 2010 (climatic wet season) and April 2011 (climatic dry season). Observations are based on helicopter-borne and ground-based measurements in an area of 100 km2 off the coast of Barbados. CARRIBA is accompanied by long-term observations at the Barbados Cloud Observatory located at the East coast of Barbados since early in 2010 and …


Shape-Induced Gravitational Sorting Of Saharan Dust During Transatlantic Voyage: Evidence From Caliop Lidar Depolarization Measurements, Weidong Yang, Alexander Marshak, Alexander Kostinski, Tamás Várnai Jun 2013

Shape-Induced Gravitational Sorting Of Saharan Dust During Transatlantic Voyage: Evidence From Caliop Lidar Depolarization Measurements, Weidong Yang, Alexander Marshak, Alexander Kostinski, Tamás Várnai

Department of Physics Publications

Motivated by the physical picture of shape‐dependent air resistance and, consequently, shape‐induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust‐scattered light depolarization ratio (δ). Specifically, we examined a large data set of Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median δ is uniformly distributed between 2 and 5 km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle …


Record-Breaking Statistics For Random Walks In The Presence Of Measurement Error And Noise, Yaniv Edrey, Alexander Kostinski, Satya N. Majumdar, Brian Berkowitz May 2013

Record-Breaking Statistics For Random Walks In The Presence Of Measurement Error And Noise, Yaniv Edrey, Alexander Kostinski, Satya N. Majumdar, Brian Berkowitz

Department of Physics Publications

We examine distance record setting by a random walker in the presence of a measurement error δ and additive noise γ and show that the mean number of (upper) records up to n steps still grows universally as ⟨Rn⟩∼n1/2 for large n for all jump densities, including Lévy distributions, and for all δ and γ. In contrast, the pace of record setting, measured by the amplitude of the n1/2 growth, depends on δ and γ. In the absence of noise (γ=0), the amplitude S(δ) is evaluated explicitly for arbitrary jump distributions and it decreases monotonically with …


Applicability Of Carbon And Boron Nitride Nanotubes As Biosensors: Effect Of Biomolecular Adsorption On The Transport Properties Of Carbon And Boron Nitride Nanotubes, Xiaoliang Zhong, Saikat Mukhopadhyay, Gowtham S, Ravindra Pandey, Shashi P. Karna Apr 2013

Applicability Of Carbon And Boron Nitride Nanotubes As Biosensors: Effect Of Biomolecular Adsorption On The Transport Properties Of Carbon And Boron Nitride Nanotubes, Xiaoliang Zhong, Saikat Mukhopadhyay, Gowtham S, Ravindra Pandey, Shashi P. Karna

Data Science Publications

The effect of molecular adsorption on the transport properties of single walled carbon and boron nitride nanotubes (CNTs and BNNTs) is investigated using density functional theory and nonequilibrium Green’s function methods. The calculated I-V characteristics predict noticeable changes in the conductivity of semiconducting BNNTs due to physisorption of nucleic acid base molecules. Specifically, guanine which binds to the side wall of BNNT significantly enhances its conductivity by introducing conduction channels near the Fermi energy of the bioconjugated system. For metallic CNTs, a large background current masks relatively small changes in current due to the biomolecular adsorption. The results therefore suggest …


Hetero-Junctions Of Boron Nitride And Carbon Nanotubes: Synthesis And Characterization, Yoke Khin Yap Mar 2013

Hetero-Junctions Of Boron Nitride And Carbon Nanotubes: Synthesis And Characterization, Yoke Khin Yap

Department of Physics Publications

Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up …


On-Chip Non-Reciprocal Optical Devices Based On Quantum Inspired Photonic Lattices, Ramy El-Ganainy, A. Eisfeld, Miguel Levy, Demetrios N. Christodoulides Jan 2013

On-Chip Non-Reciprocal Optical Devices Based On Quantum Inspired Photonic Lattices, Ramy El-Ganainy, A. Eisfeld, Miguel Levy, Demetrios N. Christodoulides

Department of Physics Publications

We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio …


Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak Jan 2013

Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak

Department of Physics Publications

Although devices have been fabricated displaying interesting single-electron transport characteristics, there has been limited progress in the development of tools that can simulate such devices based on their physical geometry over a range of bias conditions up to a few volts per junction. In this work, we present the development of a multi-island transport simulator, MITS, a simulator of tunneling transport in multi-island devices that takes into account geometrical and material parameters, and can span low and high source-drain biases. First, the capabilities of MITS are demonstrated by modeling experimentaldevices described in the literature, and showing that the simulated device …


Electron Transport In Low-Dimensional Nanostructures - Theoretical Study With Application, Xiaoliang Zhong Jan 2013

Electron Transport In Low-Dimensional Nanostructures - Theoretical Study With Application, Xiaoliang Zhong

Dissertations, Master's Theses and Master's Reports - Open

Graphene as a carbon monolayer has attracted extensive research interest in recent years. My research work within the frame of density functional theory has suggested that positioning graphene in proximity to h-BN may induce a finite energy gap in graphene, which is important for device applications. For an AB-stacked graphene/BN bilayer, a finite gap is induced at the equilibrium configuration. This induced gap shows a linear relationship with the applied strain. For a graphene/BN/graphene trilayer, a negligible gap is predicted in the ground state due to the overall symmetry of the system. When an electric field is applied, a tunable …


Nonlinear Effects In Magnetic Garnet Films And Nonreciprocal Optical Bloch Oscillations In Waveguide Arrays, Pradeep Kumar Jan 2013

Nonlinear Effects In Magnetic Garnet Films And Nonreciprocal Optical Bloch Oscillations In Waveguide Arrays, Pradeep Kumar

Dissertations, Master's Theses and Master's Reports - Open

This dissertation presents detailed experimental and theoretical investigations of nonlinear and nonreciprocal effects in magnetic garnet films. The dissertation thus comprises two major sections. The first section concentrates on the study of a new class of nonlinear magneto-optic thin film materials possessing strong higher order magnetic susceptibility for nonlinear optical applications. The focus was on enlarging the nonlinear performance of ferrite garnet films by strain generation and compositional gradients in the sputter-deposition growth of these films. Under this project several bismuth-substituted yttrium iron garnet (Bi,Y) 3 (Fe,Ga)5 O12(acronym as Bi:YIG) films have been sputter-deposited over gadolinium gallium …


Magneto-Photonic Crystals For Optical Sensing Applications, Neluka Dissanayake Jan 2013

Magneto-Photonic Crystals For Optical Sensing Applications, Neluka Dissanayake

Dissertations, Master's Theses and Master's Reports - Open

Among the optical structures investigated for optical sensing purpose, a significant amount of research has been conducted on photonic crystal based sensors. A particular advantage of photonic crystal based sensors is that they show superior sensitivity for ultra-small volume sensing. In this study we investigate polarization changes in response to the changes in the cover index of magneto-optic active photonic band gap structures. One-dimensional photonic-band gap structures fabricated on iron garnet materials yield large polarization rotations at the band gap edges. The enhanced polarization effects serve as an excellent tool for chemical sensing showing high degree of sensitivity for photonic …


Optical Waveguides And Structures For Short Haul Optical Communication Channels Within Printed Circuit Boards, Nicholas J. Riegel Jan 2013

Optical Waveguides And Structures For Short Haul Optical Communication Channels Within Printed Circuit Boards, Nicholas J. Riegel

Dissertations, Master's Theses and Master's Reports - Open

Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized.

Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low …


Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar Jan 2013

Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar

Dissertations, Master's Theses and Master's Reports - Open

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed.

Simulations using …


Investigations Of Cloud Microphysical Response To Mixing Using Digital Holography, Matthew Jacob Beals Jan 2013

Investigations Of Cloud Microphysical Response To Mixing Using Digital Holography, Matthew Jacob Beals

Dissertations, Master's Theses and Master's Reports - Open

Cloud edge mixing plays an important role in the life cycle and development of clouds. Entrainment of subsaturated air affects the cloud at the microscale, altering the number density and size distribution of its droplets. The resulting effect is determined by two timescales: the time required for the mixing event to complete, and the time required for the droplets to adjust to their new environment. If mixing is rapid, evaporation of droplets is uniform and said to be homogeneous in nature. In contrast, slow mixing (compared to the adjustment timescale) results in the droplets adjusting to the transient state of …