Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

California Polytechnic State University, San Luis Obispo

Simulation

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler Jun 2023

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler

Physics

Gamma rays principally interact with matter through Compton scattering, photoelectric effect, pair production, and triplet production. The focus of this simulation is to study the theoretical energy spectrum created by gamma rays from a Cesium-137 source, which produces gamma photons with an energy of 0.662 MeV. At this energy level, most interactions are results of Compton scatters and the photoelectric effect. Therefore, this simulation only models those two effects on gamma rays. Using Monte Carlo methods and the Metropolis algorithm to sample the probability distributions of the two effects allowed for the simulation of gamma rays in a Sodium Iodide …


Diffusion-Driven Aggregation Of Particles In Quasi-2d Membranes, Oscar Gullickson Rausis Jun 2023

Diffusion-Driven Aggregation Of Particles In Quasi-2d Membranes, Oscar Gullickson Rausis

Physics

Many biological membranes can be modeled as two-dimensional (2D) viscous fluid sheets surrounded by three-dimensional (3D) fluids of different viscosity. Such membranes are dubbed quasi-2D as they exhibit properties of both 2D and 3D fluids. The Saffman length is a parameter that describes the energy exchange between the membrane and bulk fluids and controls the cross-over from 2D to 3D hydrodynamics. We aim to model diffusion-driven aggregation of particles embedded in a quasi-2D membrane. It is known that hydrodynamic interactions between solute particles significantly reduce their aggregation rate in 3D fluids. It is expected that in quasi-2D membranes the reduction …


Using Current-Voltage Characteristics To Probe The Transport Mechanism In Carbon Nanotube Networks, Alejandro Jimenez Nov 2020

Using Current-Voltage Characteristics To Probe The Transport Mechanism In Carbon Nanotube Networks, Alejandro Jimenez

Physics

Carbon nanotube (CNT) random networks have shown great promise in electronic applications. For example, they have been used as the active layer in thin film transistor biosensors and as electrodes in supercapacitors (Hu, 2010). Although CNT networks applications are numerous, some of the key details of their electrical behavior are not fully understood. In particular, it is known that the junctions between tubes in CNT networks play a key role in determining the sensing properties of the network (Thanihaichelvana, et al., 2018), however, the mechanism by which metallic-semiconducting (m-s) tube junctions affect the electrical sensing properties of the network is …


Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney Oct 2016

Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) conducts research on a modified Boeing 747sp aircraft. By using a variety of infrared science instruments mounted on a 2.7 meter telescope, researchers can make discoveries about the galactic center, star formation, and various topics associated with a deeper understanding of our universe. To efficiently collect data through the SOFIA instruments, the instruments must be tested and prepared prior to being placed on the aircraft. Therefore, with the use of the Telescope Assembly Alignment Simulator (TAAS), researchers can design and construct improvements needed for these instruments to efficiently perform while in flight. The …


Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano Jun 2014

Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano

Master's Theses

Using an explicit integration method in physically based animations has many advantages including conceptual and computational simplicity, however, it re- quires small time steps to ensure low numerical instability. Simulations with large numbers of individually interacting components such as cloth, hair, and fluid models, are limited by the sections of particles most susceptible to error. This results in the need for smaller time steps than required for the majority of the system. These sections can be diverse and dynamic, quickly changing in size and location based on forces in the system. Identifying and handling these trou- blesome sections could allow …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Point-Spread Function Assessment Of Sg-Dbr Based Swept Source For Oct Imaging, David Wilkey Gilbert Jun 2012

Point-Spread Function Assessment Of Sg-Dbr Based Swept Source For Oct Imaging, David Wilkey Gilbert

Master's Theses

Swept Source Optical Coherence Tomography (SS-OCT) is a medical imaging technique that requires high repetition rate, widely-tunable coherent laser sources. Sampled grating distributed Bragg reflector (SG-DBR) lasers are proven in telecom applications and are expected to fulfill the requirements for SS-OCT at a significantly lower cost than alternative solutions.

Constructed entirely on a semiconductor substrate, SG-DBR lasers require four synchronized waveforms to modulate the output wavelength and intensity. Because of this unique tuning mechanism, there are a number of systematic and noise sources that can affect the quality of the OCT point-spread function (PSF). Based on these noise sources, software …