Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

California Polytechnic State University, San Luis Obispo

Renewable energy

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Potential Environmental Effects Of Deepwater Floating Offshore Wind Energy Facilities, Hayley Farr, Benjamin Ruttenberg, Ryan K. Walter, Yi-Hui Wang, Crow White Mar 2021

Potential Environmental Effects Of Deepwater Floating Offshore Wind Energy Facilities, Hayley Farr, Benjamin Ruttenberg, Ryan K. Walter, Yi-Hui Wang, Crow White

Physics

Over the last few decades, the offshore wind energy industry has expanded its scope from turbines mounted on foundations driven into the seafloor and standing in less than 60 m of water, to floating turbines moored in 120 m of water, to prospecting the development of floating turbines moored in ~1,000 m of water. Since there are few prototype turbines and mooring systems of these deepwater, floating offshore wind energy facilities (OWFs) currently deployed, their effects on the marine environment are speculative. Using the available scientific literature concerning appropriate analogs, including fixed-bottom OWFs, land-based wind energy facilities, wave and tidal …


Spatial And Temporal Variation Of Offshore Wind Power And Its Values Along The Central California Coast, Yi-Hui Wang, Ryan K. Walter, Crow White, Matthew D. Kehrli, Stephen F. Hamilton, Patrick H. Soper, Benjamin I. Ruttenberg Oct 2019

Spatial And Temporal Variation Of Offshore Wind Power And Its Values Along The Central California Coast, Yi-Hui Wang, Ryan K. Walter, Crow White, Matthew D. Kehrli, Stephen F. Hamilton, Patrick H. Soper, Benjamin I. Ruttenberg

Physics

The analysis of the spatiotemporal variability of wind power remains limited during the planning stage of an offshore wind farm. This study provides a framework to investigate how offshore wind power varies along the Central California Coast over diurnal and seasonal time scales, which is critical for reliability and functionality of the grid system. We find that offshore wind power in this region peaks during evening hours across all seasons and maximizes in spring and summer. The timing of peak offshore wind power production better aligns with that of peak demand across California than solar and land-based wind power production, …