Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 40

Full-Text Articles in Physical Sciences and Mathematics

Spectroscopic Diagnostics For Supersonic Air Microwave Discharges, James E. Caplinger Dec 2020

Spectroscopic Diagnostics For Supersonic Air Microwave Discharges, James E. Caplinger

Theses and Dissertations

Optical Emission Spectroscopy (OES) is an increasingly relevant technique in plasma diagnostics due to its inherent non-invasive nature and simple application relative to other popular techniques. In this work, common OES techniques are combined with novel methods, developed here, in an effort to provide comprehensive OES techniques for stationary and supersonic air microwave discharges. To this end, a detailed collisional-radiative model for strong atomic oxygen lines has been developed and used to identify the importance of often overlooked mechanisms including cascade emission and metastable excitation. Using these results, a combined argon actinometry technique was developed which makes use of the …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai Oct 2020

Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai

AFIT Patents

A vector partially coherent source (VPCS) generator includes a laser that emits coherent light; an interferometer consisting of polarizing beam splitters (PBSs) to split the laser light into its vertical and horizontal polarization components;] first and second spatial light modulators (SLMs) that respectively control the vertical and horizontal polarization components; and a control system communicatively coupled to the first and second SLMs to adjust beam shape and coherence without physically moving or removing optical elements in the interferometer.


A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks Oct 2020

A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks

Faculty Publications

We use the Baranger model to compute collisional broadening and shift rates for the D1 and D2 spectral lines of M + Ng, where M = K, Rb, Cs and Ng = He, Ne, Ar. Scattering matrix elements are calculated using the channel packet method, and non-adiabatic wavepacket dynamics are determined using the split-operator method together with a unitary transformation between adiabatic and diabatic representations. Scattering phase shift differences are weighted thermally and are integrated over temperatures ranging from 100 K to 800 K. We find that predicted broadening rates compare well with experiment, but shift rates are …


Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing Sep 2020

Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing

Theses and Dissertations

Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using …


Low-Information Radiation Imaging Using Rotating Scatter Mask Systems And Neural Network Algorithms, Robert J. Olesen Sep 2020

Low-Information Radiation Imaging Using Rotating Scatter Mask Systems And Neural Network Algorithms, Robert J. Olesen

Theses and Dissertations

While recent studies have demonstrated the directional capabilities of the single-detector rotating scatter mask (RSM) system for discrete, dual-particle environments, there has been little progress towards adapting it as a true imaging device. In this research, two algorithms were developed and tested using an RSM mask design previously optimized for directional detection and simulated 137Cs signals from a variety of source distributions. The first, maximum-likelihood expectation-maximization (ML-EM), was shown to generate noisy images, with relatively low accuracy (145% average relative error) and signal-to-noise ratio (0.27) for most source distributions simulated. The second, a novel regenerative neural network (ReGeNN), performed exceptionally …


Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer Jul 2020

Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer

Faculty Publications

We advance the benefits of previously reported four-dimensional (4-D) weather cubes toward the creation of high-fidelity cloud-free line-of-sight (CFLOS) beam propagation for realistic assessment of autotracked/dynamically routed free-space optical (FSO) communication datalink concepts. The weather cubes accrue parameterization of optical effects and custom atmospheric resolution through implementation of numerical weather prediction data in the Laser Environmental Effects Definition and Reference atmospheric characterization and radiative transfer code. 4-D weather cube analyses have recently been expanded to accurately assess system performance (probabilistic climatologies and performance forecasts) at any wavelength/frequency or spectral band in the absence of field tests and employment data. The …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer

Faculty Publications

Part I of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and steady-state thermal blooming (SSTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number and the distortion number to gauge the strength of the simulated turbulence and SSTB. These parameters simplify greatly given propagation paths with constant atmospheric conditions. In addition, we use the …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer

Faculty Publications

Part II of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and time-dependent thermal blooming (TDTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number, the number of wind-clearing periods, and the distortion number to gauge the strength of the simulated turbulence and TDTB. These parameters simply greatly given propagation paths with constant atmospheric conditions. …


Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan Jul 2020

Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan

Faculty Publications

A portable LIBS device was used for rapid elemental impurity analysis of plutonium alloys. This device demonstrates the potential for fast, accurate in-situ chemical analysis and could significantly reduce the fabrication time of plutonium alloys.


Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice Jul 2020

Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice

Faculty Publications

An experiment was conducted to study turbulence along a 149-km path between the Mauna Loa and Haleakala mountain tops using digital cameras and light-emitting diode (LED) beacons. Much of the path is over the ocean, and a large portion of the path is 3 km above sea level. On the Mauna Loa side, six LED beacons were placed in a roughly linear array with pair spacings from 7 to 62 m. From the Haleakala side, a pair of cameras separated by 83.8 cm observed these beacons. Turbulence along the path induces tilts on the wavefronts, which results in displacements of …


Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino Jul 2020

Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino

Faculty Publications

Long-range optical imaging applications are typically hindered by atmospheric turbulence. The effect of turbulence on an imaging system can manifest itself as an image blur effect usually quantified by the phase distortions present in the system. The blurring effect can be understood on the basis of the measured strength of atmospheric optical turbulence along the propagation path and its impacts on phase perturbation statistics within the imaging system. One method for obtaining these measurements is by the use of a dynamically ranged Rayleigh beacon system that exploits strategically varied beacon ranges along the propagation path, effectively obtaining estimates of the …


Fourier Propagation Tool For Aberration Analysis And A Point Spread Function Calculation Of Systems With Curved Focal Planes, Stephen C. Cain Jun 2020

Fourier Propagation Tool For Aberration Analysis And A Point Spread Function Calculation Of Systems With Curved Focal Planes, Stephen C. Cain

Faculty Publications

This paper describes a new Fourier propagator for computing the impulse response of an optical system with a curved focal plane array, while including terms ignored in Fresnel and Fraunhofer calculations. The propagator includes a Rayleigh-Sommerfeld diffraction formula calculation from a distant point through the optical system to its image point predicted by geometric optics on a spherical surface. The propagator then approximates the neighboring field points via the traditional binomial approximation of the Taylor series expansion around that field point. This technique results in a propagator that combines the speed of a Fourier transform operation with the accuracy of …


Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal Jun 2020

Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal

AFIT Patents

Calibration of a radiometry system uses a readout circuit of a photo-detector to provide first and second measurements collected over first and second integration times, respectively, where the first and second measurements are related to a photonic input to the photo-detector by a gain and a bias. First mean and variance values are computed for a plurality of first measurements. Second mean and variance values are computed for a plurality of second measurements. The gain and bias are determined from the first and second mean values and the first and second variance values without the use of a calibrated source. …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State Analyzer …


Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles Apr 2020

Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to experimentally determine the (0/−) level of the Mg acceptor in an Mg-doped β-Ga2O3 crystal. Our results place this level 0.65 eV (±0.05 eV) above the valence band, a position closer to the valence band than the predictions of several recent computational studies. The crystal used in this investigation was grown by the Czochralski method and contains large concentrations of Mg acceptors and Ir donors, as well as a small concentration of Fe ions and an even smaller concentration of Cr ions. Below room temperature, illumination with 325 nm laser light …


One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown Mar 2020

One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown

Theses and Dissertations

Blind deconvolution is used to complete missions to detect adversary assets in space and to defend the nation's assets. A new algorithm was developed to perform blind deconvolution for objects that are spatially separable using multiple frames of data. This new one-dimensional approach uses the expectation-maximization algorithm to blindly deconvolve spatially separable objects. This object separation reduces the size of the object matrix from an NxN matrix to two singular vectors of length N. With limited knowledge of the object and point spread function the one-dimensional algorithm successfully deconvolved the objects in both simulated and laboratory data.


Laser Induced Thermal Degradation Of Carbon Fiber-Carbon Nanotube Hybrid Laminates, Joshua A. Key Mar 2020

Laser Induced Thermal Degradation Of Carbon Fiber-Carbon Nanotube Hybrid Laminates, Joshua A. Key

Theses and Dissertations

Recent advancements in fiber laser technology have increased interest in target material interactions and the development of thermal protection layers for tactical laser defense. A significant material of interest is carbon fiber reinforced polymers due to their increased use in aircraft construction. In this work, the thermal response of carbon fiber-carbon nanotube (CNT) hybrid composites exposed to average irradiances of 0.87-6.8 W/cm2 were observed using a FLIR sc6900 thermal camera. The camera had a pixel resolution of 640x512 which resulted in a spatial resolution of 0.394x0.383 mm/pixel for the front and 0.463x0.491 mm/pixel for the back. The hybrid samples …


Enhanced Brdf Modeling Using Directional Volume Scatter Terms, Michael W. Bishop Mar 2020

Enhanced Brdf Modeling Using Directional Volume Scatter Terms, Michael W. Bishop

Theses and Dissertations

Accurate Bidirectional Reflectance Distribution Function (BRDF) models provide critical scatter behavior for computer graphics and remote sensing performance. The popular microfacet class of BRDF models is geometric-based and computationally inexpensive compared to wave-optics models. Microfacet models commonly account for surface scatter and Lambertian volume scatter, but not directional volume scatter. This work proposes directional volume scatter modeling for enhanced performance over all observation regions. Five directional volume models are incorporated into the modified Cook-Torrance microfacet model. Additionally, a semi-empirical directional volume term is presented based on the Beckmann microfacet distribution and a modified Fresnel reflection term. High fidelity, low density …


Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachel L. Wolfgang Mar 2020

Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachel L. Wolfgang

Theses and Dissertations

Microfacet BRDF models assume that a surface has many small microfacets making up the roughness of the surface. Despite their computational simplicity in applications in remote sensing and scene generation, microfacet models lack the physical accuracy of wave optics models. In a previous work, Butler proposed to replace the Fresnel reflectance term of microfacet models with the Rayleigh-Rice polarization factor, Q, to create a more accurate model. This work examines the novel model that combines microfacet and wave optics terms for its accuracy in the pp and ss polarized cases individually. The model is fitted to the polarized data in …


Validation Of Hts Optical Turbulence Profiling Via Sonic Anemometry, Alexander S. Boeckenstedt Mar 2020

Validation Of Hts Optical Turbulence Profiling Via Sonic Anemometry, Alexander S. Boeckenstedt

Theses and Dissertations

Previous turbulence measurements along a near-ground, 500 m, horizontal path using two helium-neon laser beacons and Hartmann Turbulence Sensor (HTS) yielded profiles of C2n by measuring local aberrated wavefront tilts. The HTS C2n estimates were consistent with integrated turbulence values collected along the same path by a BLS900 scintillometer. Further validation of the HTS profiling method is necessary to produce accurate optical turbulence profiles for wavefront correction and to eventually gain an improved understanding of turbulence in the lower atmosphere and its variation as a function of altitude. In order to add confidence to the HTS …


Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson Mar 2020

Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson

Theses and Dissertations

There is currently a lack of research into how the atmosphere effects Zernike piston. This Zernike piston is a coefficient related to the average phase delay of a wave. Usually Zernike piston can be ignored over a single aperture because it is merely a delay added to the entire wavefront. For multi-aperture interferometers though piston cannot be ignored. The statistics of Zernike piston could supplement and improve atmospheric monitoring, adaptive optics, stellar interferometers, and fringe tracking. This research will focus on developing a statistical model for Zernike piston introduced by atmospheric turbulence.


Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen Mar 2020

Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen

Theses and Dissertations

Laser shock peening (LSP) is a form of work hardening by means of laser induced pressure impulse. LSP imparts compressive residual stresses which can improve fatigue life of metallic alloys for structural use. The finite element modeling (FEM) of LSP is typically done by applying an assumed pressure impulse, as useful experimental measurement of this pressure impulse has not been adequately accomplished. This shortfall in the field is a current limitation to the accuracy of FE modeling, and was addressed in the current work. A novel method was tested to determine the pressure impulse shape in time and space by …


Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero Mar 2020

Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero

Theses and Dissertations

The Quantum Approximation Optimization Algorithm (QAOA) is one of the most promising applications for noisy intermediate-scale quantum machines due to the low number of qubits required as well as the relatively low gate count. Much work has been done on QAOA regarding algorithm implementation and development; less has been done checking how these algorithms actually perform on a real quantum computer. Using the IBM Q Network, several instances of combinatorial optimization problems (the max cut problem and dominating set problem) were implemented into QAOA and analyzed. It was found that only the smallest toy max cut algorithms performed adequately: those …


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate Mar 2020

The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate

Theses and Dissertations

Hollow-core photonic crystal fibers (HCPCFs) shows promise as a hybrid laser with higher nonlinear process limits and small beam size over long gain lengths. This work focuses on the design of a CW molecular nitrogen (N2) stimulated Raman laser. N2 offers Raman gains scaling up to 900 amg, scaling higher than H2. The cavity experiment showed the need to include Rayleigh scattering in the high pressure required for N2 Raman lasing. Even at relatively low pressure ssuch as 1,500 psi, high conversion percentages should be found if the fiber length is chosen based on …


Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter Mar 2020

Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter

Theses and Dissertations

A process was developed to identify potential defects in previous layers of Selective Laser Melting (SLM) Powder Bed Fusion (PBF) 3D printed metal parts using a mid-IR thermal camera to track infrared 3.8-4 m band emission over time as the part cooled to ambient temperature. Efforts focused on identifying anomalies in thermal conduction. To simplify the approach and reduce the need for significant computation, no attempts were made to calibrate measured intensity, extract surface temperature, apply machine learning, or compare measured cool-down behavior to computer model predictions. Raw intensity cool-down curves were fit to a simplified functional form designed to …


Cn And C2 Spectroscopy On The Pulsed Ablation Of Graphite In The Visible Spectrum, Brandon A. Pierce Mar 2020

Cn And C2 Spectroscopy On The Pulsed Ablation Of Graphite In The Visible Spectrum, Brandon A. Pierce

Theses and Dissertations

An experimental study was conducted on the nanosecond pulsed laser ablation of graphite using a KrF laser at a fluence of 3.8 J/cm2 in Air, Ar, He, and N2. Optical emissions spectroscopy revealed the C2 Swan sequences and the CN Violet sequences. A spectroscopic model was developed to extract the molecular rotational and vibrational temperatures of each excited species for t=0.5-10 microseconds after laser irradiation. The rovibrational temperatures were found to vary with background gas for the CN Violet; however, only the vibrational temperature varied between He and the other background gases for C2 Swan. …


Mult-Spectral Imaging Of Vegetation With A Diffractive Plenoptic Camera, Tristan R. Naranjo Mar 2020

Mult-Spectral Imaging Of Vegetation With A Diffractive Plenoptic Camera, Tristan R. Naranjo

Theses and Dissertations

Snapshot multi-spectral sensors allow for object detection based on its spectrum for remote sensing applications in air or space. By making these types of sensors more compact and lightweight, it allows drones to dwell longer on targets or the reduction of transport costs for satellites. To address this need, I designed and built a diffractive plenoptic camera (DPC) which utilized a Fresnel zone plate and a light field camera in order to detect vegetation via a normalized difference vegetation index (NDVI). This thesis derives design equations by relating DPC system parameters to its expected performance and evaluates its multi-spectral performance. …