Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Physics

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 864

Full-Text Articles in Physical Sciences and Mathematics

Variability Of High-Degree Modes Over Multiple Solar Cycles Using Local Helioseismic Data From Gong, Nicholas Cebula, Sushanta Tripathy, Kiran Jain, John M. Cannon May 2024

Variability Of High-Degree Modes Over Multiple Solar Cycles Using Local Helioseismic Data From Gong, Nicholas Cebula, Sushanta Tripathy, Kiran Jain, John M. Cannon

Macalester Journal of Physics and Astronomy

In this investigation we use the local helioseismic technique of ring diagrams to study the power, energy, and damping rates of high degree solar acoustic modes. Our data covers the period from the maximum phase of solar cycle 23 to the ascending phase of cycle 25. The goal is to examine the variations in the mode parameters with solar activity as well as the differences between different cycles. For this, we use different proxies of solar activity. We use 10.7 cm radio flux measurements and a measure of magnetic flux known as magnetic activity index from magnetograms.


Going Down An Incline With Chatgpt, Corey R. Sissons May 2024

Going Down An Incline With Chatgpt, Corey R. Sissons

Student Research Symposium

In our Large Language Model (LLM) research, examining ChatGPT 4, we devised a physics problem involving an object descending an inclined plane. Through variations in terminology such as "rolling," "sliding," "solid sphere," "hollow sphere," "wooden ramp," "no-slip ramp," and more, we sought to evaluate LLM responses for different scenarios. Our analysis aimed to discern whether the LLM’s answers exhibited expertise in the field of physics. This experiment sheds light on LLM’s ability to give accurate and precise physics answers as well as variation in responses to nuanced changes in problem formulation. This provides valuable insights into its proficiency and potential …


Time Resolved X-Ray Spectroscopy Of Highly Charged Ar, Nd, And Pr, Timothy Burke May 2024

Time Resolved X-Ray Spectroscopy Of Highly Charged Ar, Nd, And Pr, Timothy Burke

All Dissertations

Highly Charged Ions (HCIs) may be considered ideal mini-laboratory in which one can study the physics of matter and light in an environment of high internal electric field that can not be recreated with standard lab equipment. The remaining electron(s) exist in the extremely large electric field of the nucleus and therefore measurements of electronic transitions in these systems provide stringent tests of our understanding of physics in extreme conditions. Quantum electrodynamics (QED) despite being a powerful theory exhibits large discrepancies for systems under extreme conditions. The work here investigates the atomic properties within non-Maxwellian plasmas. The HCI plasmas studied …


Experimental Analyses Of Emission Lines In The Uv/Vis/Nir Range For Astrophysically-Important Elements: From The Iron Group To R-Process Elements, Brynna Neff May 2024

Experimental Analyses Of Emission Lines In The Uv/Vis/Nir Range For Astrophysically-Important Elements: From The Iron Group To R-Process Elements, Brynna Neff

All Dissertations

Analysis of astrophysical phenomena requires an understanding of the electronic

structure and transition probabilities of the elements present in that environment,

yet there are still many charge states of heavy elements whose electronic

structures and spectroscopic properties are not yet well understood. To address this,

we investigated the spectroscopic properties of three different elements through an

analysis of spectra collected from three different experimental apparatuses.

In order to better understand the spectroscopic properties of Ni I and II, we

analyzed spectra collected from the Compact Toroidal Hybrid (CTH) apparatus at

Auburn University. In this experiment, a nickel sample was inserted …


High Powered Rocket Modification, Joshua Gage Apr 2024

High Powered Rocket Modification, Joshua Gage

SACAD: John Heinrichs Scholarly and Creative Activity Days

Rocketry has always been a fun challenge for me. Since not only was I able to learn something new every time I did it, but I was able to do something with my hands as well. One area that has been very challenging for me is how to put a tracker onto a rocket that has no electronics bay. And studying for the L2 Certification tests. And this poster shows my thoughts and process I did to pass my L2 Certification Flight.


Igniting Passion:​ A Detailed Journey Through Rocketry Course Activities, Krish M. Patel, Hannah Caycedo, Joshua Gage, Josi Maness, Kevin Park, Mufeng Shen Apr 2024

Igniting Passion:​ A Detailed Journey Through Rocketry Course Activities, Krish M. Patel, Hannah Caycedo, Joshua Gage, Josi Maness, Kevin Park, Mufeng Shen

SACAD: John Heinrichs Scholarly and Creative Activity Days

This course is a semester-long adventure in rocketry, led by Dr. Paul Adams. It covers everything about building and flying rockets, starting from the basics to more advanced rocketry. Students learn how to build rockets and use equipment used I payload systems like and altimeter and a GPS. We also learned about the importance of safety involved with building and launching rockets.


Questioning Reality: The Progressive Development Of Modern Physics, Joshua Lancman Jan 2024

Questioning Reality: The Progressive Development Of Modern Physics, Joshua Lancman

STEM for Success Showcase

Humanity has a tendency to divide time. The past is distinct from the present which is entirely separate from the future. In supposedly 20-20 vision history is neatly divided into different sections, distinct eras with sharp lines between them. What is present and in the future is always modern. What is past is something else with another name.

Yet time is not divided so neatly. We know this living through it: years and decades blend into one another in a non-uniform progression. To divide human history into separate eras is a necessary simplification, as it helps to ascribe order onto …


An Exploration Of Misconceptions In Introductory Physics, Christopher Mattthew Wheatley Jan 2024

An Exploration Of Misconceptions In Introductory Physics, Christopher Mattthew Wheatley

Graduate Theses, Dissertations, and Problem Reports

The study of student misconceptions about physics concepts has long been an important area of inquiry in physics education research (PER). The research discussed in this dissertation builds upon the developments in PER by exploring the prevalence of consistently held undergraduate student misconceptions in introductory calculus-based physics. This thesis explores the nature of student misconceptions, mistakes, and naive answering patterns in both introductory undergraduate Newtonian mechanics and electromagnetism by applying a network analytic technique called module analysis to student responses to different concept inventories from institutions of various levels of incoming physics preparation. Each study applying these methods also demonstrates …


Student Performance In Modern Physics In An Active, Partially-Flipped Classroom, Scott Yarbrough Jan 2024

Student Performance In Modern Physics In An Active, Partially-Flipped Classroom, Scott Yarbrough

Physics Dissertations

The effectiveness of the flipped classroom and hybrid-flipped (partially flipped, partially lecture-based) method of instruction has been extensively studied for high school and introductory undergraduate physics courses, and it has been shown to increase student understanding and performance. However, few studies have been done for upper-level undergraduate courses, and even fewer have been done for virtual courses. In Spring 2021 and Fall 2023, a fully virtual, hybrid-flipped Modern Physics course was taught, primarily to a class of primarily juniors and seniors, with some sophomores. All were STEM majors. The same course, with a similar enrolment and demographic of students, was …


Quantum Logic Control And Precision Measurements Of Molecular Ions In A Ring Trap: An Approach For Testing Fundamental Symmetries, Yan Zhou, Joshua O. Island, Matt Grau Jan 2024

Quantum Logic Control And Precision Measurements Of Molecular Ions In A Ring Trap: An Approach For Testing Fundamental Symmetries, Yan Zhou, Joshua O. Island, Matt Grau

Physics Faculty Publications

This paper presents an experimental platform designed to facilitate quantum logic control of polar molecular ions in a segmented ring ion trap, paving the way for precision measurements. This approach focuses on achieving near-unity state preparation and detection, as well as long spin-precession coherence. A distinctive aspect lies in separating state preparation and detection conducted in a static frame from parity-selective spin precession in a rotating frame. Moreover, the method is designed to support spatially and temporally coincident measurements on multiple ions prepared in states with different sensitivity to the new physics of interest. This provides powerful techniques to probe …


Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage Dec 2023

Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage

Open Educational Resources

Creative Physics syllabus for all information and guidelines will be a big help for students to know about the class structure, expectations, submission, personalized class materials, class ethics, and requirements in one place. This detailed syllabus will be a very effective way of expressing the information to the class. Creating a detailed syllabus and engaging activity of in the learning management system such as syllabus review activity will help students to navigate through important items on the syllabus.


Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong Dec 2023

Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong

Seton Hall University Dissertations and Theses (ETDs)

Plasma catalysis is an advantageous approach that combines the effects of plasma with the enhancements of a catalyst. By utilizing a nickel catalyst in the plasma discharge zone of a dielectric barrier discharge (DBD), it can give an enhancement to the electrical field, boost microdischarges, and increase conversion and selectivity rates of CH4 and CO2 in the dry reforming of methane (DRM) reaction.

Industrial application of nickel catalysts in DBD Plasma DRM process are limited by poor stability, which is caused by the sintering of active metal particles and coke deposition on the catalyst surface. In this work, …


An Introduction To The Veritas Observatory, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer Oct 2023

An Introduction To The Veritas Observatory, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer

Annual Student Research Poster Session

Located at the base of Mount Hopkins, Arizona, at an elevation of approximately 4200 feet, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma ray observatory containing four Cherenkov telescopes designed to detect very high energy gamma rays with energies ranging from 100GeV to 10TeV using the Imaging Atmospheric Cherenkov Technique. In April 2007, VERITAS began successful operations with all four telescopes. As of today, over 15 years of data has been taken by the VERITAS array, stored in an archive of data, and used for a wide variety of research, publications, PhD theses, and conventions …


Analysis Of The Crab Nebula And Pulsar, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer Oct 2023

Analysis Of The Crab Nebula And Pulsar, Alexander Biddle, Ian Kuhl, Jingze (Justin) Zhou, Avery Archer

Annual Student Research Poster Session

Although the Crab Nebula is well understood, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) still regularly observes the Crab's highest energy emissions. These emissions are used to calibrate the telescopes, further, document the system, and investigate the validity of physical models. Our research this summer is geared to analyze data from 2018-2022 to add to an ongoing research project investigating the long term variability of the Crab Nebula’s emission.


Supporting Neurodivergent Talent: Adhd, Autism, And Dyslexia In Physics And Space Sciences, Niescja E. Turner, Heather Haynes Smith Aug 2023

Supporting Neurodivergent Talent: Adhd, Autism, And Dyslexia In Physics And Space Sciences, Niescja E. Turner, Heather Haynes Smith

Physics and Astronomy Faculty Research

Diversity, equity, inclusion, and belonging efforts must include disability and neurodivergence. While there is a long history of famous scientists being identified or speculatively indicated to be neurodivergent, identification on an individual basis has been limited until fairly recently. Definitions have changed and broadened, and people are being identified or are identifying themselves as neurodivergent and are learning about their paths and their brains in a way that was unavailable to people two decades ago. In the contemporary physics or space science classroom or workplace, we have both a responsibility to include and support our neurodivergent learners and scientists, as …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Study Of Radiation Effects In Gan-Based Devices, Han Gao Jul 2023

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


A Study Of Data/Monte Carlo Agreement In Charmed Baryon Decays At Belle Ii, Kaitlyn Thurmond May 2023

A Study Of Data/Monte Carlo Agreement In Charmed Baryon Decays At Belle Ii, Kaitlyn Thurmond

Honors Theses

The Belle II experiment at the SuperKEKB electron-positron accelerator facility in Tsukuba, Japan has a primary goal of searching for new physics beyond the Standard Model of particle physics. Extremely precise measurements of particle decays will be compared with Standard Model predictions in order to expose the presence of new particles and interactions. These measurements are prepared using simulated samples to avoid potential biases when studying the data. The Belle II collaboration produces two types of simulated samples for this purpose. One is produced with consistent calibration payloads and another with payloads calibrated as a function of data taking. This …


Photonic Sensors Based On Integrated Ring Resonators, Jaime Da Silva May 2023

Photonic Sensors Based On Integrated Ring Resonators, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis investigates the application of integrated ring resonators to different sensing applications. The sensors proposed here rely on the principle of optical whispering gallery mode (WGM) resonance shifts of the resonators. Three distinct sensing applications are investigated to demonstrate the concept: a photonic seismometer, an evanescent field sensor, and a zero-drift Doppler velocimeter. These concepts can be helpful in developing lightweight, compact, and highly sensitive sensors. Successful implementation of these sensors could potentially address sensing requirements for both space and Earth-bound applications. The feasibility of this class of sensors is assessed for seismic, proximity, and vibrational measurements.


An Analysis Of Detection Asymmetry Using Baryon Decays In Belle Ii, Matthew Mestayer May 2023

An Analysis Of Detection Asymmetry Using Baryon Decays In Belle Ii, Matthew Mestayer

Honors Theses

The purpose of this study was to determine the detection asymmetry of the Belle II detector using decays of two common baryons, Λ0 → ��π- and Σ+ → ��π0. A Monte Carlo simulation of both decays was used to determine the validity of signal isolation criteria. These criteria were then applied to the Belle II data, allowing for a comparison of the detection asymmetry in the data relative to the simulation. The results show a moderate detection asymmetry when using the Λ0 → ��π- decay, particularly for forward-going baryons. For the Σ+ …


An Exposition From Four-Vector To Quantum Field Theory, Weverton Dos Santos Alves May 2023

An Exposition From Four-Vector To Quantum Field Theory, Weverton Dos Santos Alves

Honors Program Theses and Projects

The goal of this thesis is to research leading mass-generation theoretical models in particle physics; Which is the physics that fundamentally imparts mass on the known elementary particles. Before these mechanisms, all particles are massless quantum fields. As part of a 2021 REU (Research Experience for Undergraduates) and a team investigating quark mass at Jefferson National Lab, I worked on a mechanical design of the Lepton Direction Electromagnetic calorimeter part of the detector upgrade for the Brookhaven National Laboratory. As integral as this effort is, because the theoretical aspects of mass generation and quark mass physics are traditionally beyond what …


Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper May 2023

Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper

Doctoral Dissertations

Total absorption spectroscopy is a method of gamma-ray spectroscopy that has gained prominence in the past several decades, as nuclear data revisions are performed on older nuclear data, which is often incomplete. A strong understanding of underlying nuclear data, particularly fission and beta decay data, is essential for nuclear reactors and nuclear fuel decay heat. This PhD work involves the analysis of fission fragments 106Mo [Mo-106] and 106Tc [Tc-106]. These neutron rich isotopes contribute upwards of 6% of the cumulative fission yield of 241Pu [Pu-241] fission, and 4% of 239Pu [Pu-239] fission. Prior data for these two fission fragments only …


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Light Scattering From Periodic, Conducting Nanostructures, Wesley Kenneth Mills May 2023

Light Scattering From Periodic, Conducting Nanostructures, Wesley Kenneth Mills

Undergraduate Honors Capstone Projects

A material with broadband light absorbing capabilities has the potential for much usefulness in devices such as photovoltaics and thermoelectrics. By energy conservation, a non-transparent material with low reflectance will be highly absorbing. Thus, much research has been devoted to understanding what makes material having low reflectance across a wide wavelength spectrum.

The importance of a material’s electronic structure in determining reflectance is well-established. Current research is revealing the additional importance of surface architecture in the reflective properties of a material. A metasurface is a two-dimentional material with physical features at or smaller than the wavelength of light considered. These …


Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark May 2023

Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark

Physics Theses & Dissertations

Recent research has shown a relationship between spiral galaxy satellite populations and the size of spiral bulges. The modern cosmological model of our universe (ΛCDM), does not predict this. Instead, ΛCMD predicts that only the total dynamical mass of a host galaxy should be correlated with satellite populations. We investigate this relationship in regimes other than satellites. In this study we compare the bulge to total mass ratios of spiral galaxies to the number of nearby galaxies within “n” Mpc. We use four papers from literature that calculate bulge to total mass ratios of 189 spiral galaxies using …


Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen Apr 2023

Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen

Honors Theses

At Jefferson Lab we use the CLAS12 detector to measure the neutron magnetic form factor. An accurate measurement of the CLAS12 neutron detection efficiency (NDE) is required. We use the nuclear reaction ���� → ��′��+�� as a source of tagged neutrons and obtain the NDE from the ratio of expected neutrons to detected ones. We assume the final state consists of ��′��+�� only, use the ��′��+ information to predict the neutron's position(expected) and then search for that neutron(detected). We select neutrons with the missing mass (MM) technique. We use simulation to validate our methods. We simulated events with the Monte-Carlo …


New Physics In The Age Of Precision Cosmology, Vivian I. Sabla Apr 2023

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla

Dartmouth College Ph.D Dissertations

The Lambda-cold dark matter (LCDM) model has become the standard model of cosmology because of its ability to reproduce a vast array of cosmological observations, from the earliest moments of our Universe, to the current period of accelerated expansion, which it does with great accuracy. However, the success of this model only distracts from its inherent flaws and ambiguities. LCDM is purely phenomenological, providing no physical explanation for the nature of dark matter, responsible for the formation and evolution of large-scale structure, and giving an inconclusive explanation for dark energy, which drives the current period of accelerated expansion.

Furthermore, cracks …


Magnetic Slime, Admin Stem For Success Apr 2023

Magnetic Slime, Admin Stem For Success

STEM for Success Showcase

Students learn chemistry and physics by making magnetic slime.


Sleigh Race Project, Admin Stem For Success Apr 2023

Sleigh Race Project, Admin Stem For Success

STEM for Success Showcase

Students use their knowledge of physics and design to build both a sleigh and a slope for the sleigh to travel on.


Basketballs And Energy, Admin Stem For Success Apr 2023

Basketballs And Energy, Admin Stem For Success

STEM for Success Showcase

No abstract provided.