Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Entropic Density Functional Theory : Entropic Inference And The Equilibrium State Of Inhomogeneous Fluids, Ahmad Yousefi Dec 2021

Entropic Density Functional Theory : Entropic Inference And The Equilibrium State Of Inhomogeneous Fluids, Ahmad Yousefi

Legacy Theses & Dissertations (2009 - 2024)

A unified formulation of the density functional theory is constructed on the foundations of entropic inference in both the classical and the quantum regimes. The theory is introduced as an application of entropic inference for inhomogeneous fluids in thermal equilibrium. It is shown that entropic inference reproduces the variational principle of DFT when informationabout expected density of particles is imposed. In the classical regime, this process introduces a family of trial density-parametrized probability distributions, and consequently a trial entropy, from which the preferred one is found using the method of Maximum Entropy (MaxEnt). In the quantum regime, similarly, the process …


Ab-Initio And Empirical Simulations Of Aluminum And Copper Metal, William Wolfs Dec 2021

Ab-Initio And Empirical Simulations Of Aluminum And Copper Metal, William Wolfs

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this work, I perform detailed calculations on the bulk and electronic properties of aluminum and copper metal. Originally, I was motivated by experimental work on the solidsolid phase changes in pure aluminum. These phase changes were well predicted by density functional theory(DFT) but difficult or impossible to predict using embedded atom method potentials(EAM). EAM potentials are in wide use to describe many properties of bulk materials, and it seemed worrying that something so basic as a phase change could not be predicted. I began running high precision calculations with DFT and compared the results to EAM potentials which had …


Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams Nov 2021

Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams

USF Tampa Graduate Theses and Dissertations

The prediction of the structure of a crystal given only the constituent elements is one of the greatest challenges in both materials science and computational science alike. If one were to try to predict a novel crystal by brute force, meaning by arranging the atoms in every possible position of the unit cell and optimizing the geometry to find the energy minima of the potential energy surface, the amount of computer resources required to complete the calculation on the timescale of a few years would vastly exceed the currently installed computational capacity of the entire world. Fortunately, several methods have …


Study Of Structural And Electronic Properties Of Intercalated Crtis2 Compound By Density Functional Theory, V. B. Parmar, A. M. Vora Jun 2021

Study Of Structural And Electronic Properties Of Intercalated Crtis2 Compound By Density Functional Theory, V. B. Parmar, A. M. Vora

Eurasian Journal of Physics and Functional Materials

In the present paper,we report the structural optimization of intercalated CrTiS2 compound by using Density Functional Theory (DFT) with Generalized Gradient Approximation (GGA) through Quantum ESPRESSO code. All the computations are carried out by using an ultra soft pseudopotential. The effect of charge transfer from guest 3d transition metal Cr-atom to self-intercalated compound TiS2 has been studied. In electronic properties, the energy band structure, total density of states (TDOS), partial density of states (PDOS) and Fermi surface have carried out. From the energy band structure, we conclude that the TiS2 intercalated compound hasa small bandgap while the …


Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz May 2021

Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz

Master's Theses

Multi-scale atomistic calculations were carried out to understand the interfacial features that dictate the mechanical integrity of the metal/ceramic nanolaminates. As such, first principles density functional theory (DFT) calculations were performed to understand the electronic and atomistic factors governing adhesion and resistance to shear for simple metal/ceramic interfaces, whereas molecular dynamics (MD) simulations were performed to observe the impact of interfacial structures, such as misfit dislocation network geometries and orientation relationships, on interfacial mechanical properties.

For the DFT investigation, we choose metals with different crystal structures, namely - Cu (fcc), Cr (bcc) and Ti (hcp) along with a variety of …


Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz May 2021

Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz

Doctoral Dissertations

Multi-scale atomistic calculations were carried out to understand the interfacial features that dictate the mechanical integrity of the metal/ceramic nanolaminates. As such, first principles density functional theory (DFT) calculations were performed to understand the electronic and atomistic factors governing adhesion and resistance to shear for simple metal/ceramic interfaces, whereas molecular dynamics (MD) simulations were performed to observe the impact of interfacial structures, such as misfit dislocation network geometries and orientation relationships, on interfacial mechanical properties.

For the DFT investigation, we choose metals with different crystal structures, namely - Cu (fcc), Cr (bcc) and Ti (hcp) along with a variety of …


Topic Modeling And Cultural Nature Of Citations, Marie Coraline Dumaz Jan 2021

Topic Modeling And Cultural Nature Of Citations, Marie Coraline Dumaz

Graduate Theses, Dissertations, and Problem Reports

Ever since the beginning of research journals, the number of academic publications has been increasing steadily. Nowadays, especially, with the new importance of online open-access journals and databases, research papers are more easily available to read and share. It also becomes harder to keep up with novelties and grasp an idea of the general impact of a given researcher, institution, journal, or field. For this reason, different bibliometric indicators are now routinely used to classify and evaluate the impact or significance of individual researchers, conferences, journals, or entire scientific communities. In this thesis, we provide tools to study trends in …