Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice Jul 2020

Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice

Faculty Publications

An experiment was conducted to study turbulence along a 149-km path between the Mauna Loa and Haleakala mountain tops using digital cameras and light-emitting diode (LED) beacons. Much of the path is over the ocean, and a large portion of the path is 3 km above sea level. On the Mauna Loa side, six LED beacons were placed in a roughly linear array with pair spacings from 7 to 62 m. From the Haleakala side, a pair of cameras separated by 83.8 cm observed these beacons. Turbulence along the path induces tilts on the wavefronts, which results in displacements of …


Systematic Errors In Video Analysis, Tim Martin, Kayt Frisch, John Zwart Mar 2020

Systematic Errors In Video Analysis, Tim Martin, Kayt Frisch, John Zwart

Faculty Work Comprehensive List

Video analysis helps students to connect physical, mathematical, and graphical models with the phenomena that the models represent and improves student kinematic graph interpretation skills. The wide-spread availability of easy to use software packages like Logger Pro (Vernier), Capstone (PASCO), and Tracker have led to many introductory physics courses adopting video analysis techniques in the classroom. Such uses include high-speed cameras to study rocket launches and other innovative applications. In this paper, we will look at ways in which some common systematic errors can affect outcomes.


Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew Feb 2020

Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground- truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions, …